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FOREWORD

Under the leadership of the Lockheed Aeronautical Systems Company, an
industry team including Allison Gas Turbine Division of General Motors,
Hamilton Standard Division of United Technologies, Gulfstream Aerospace
Corporation, and Rohr, Inc., developed and flew the Propfan Test
Assessment (PTA) aircraft 1in a highly successful program of full-scale
propfan research. This program was directed by the Advanced Turboprop
Project Office of the NASA Lewis Research Center under contract
NAS3-24339.

This report, describing and discussing the flight tests and their results,
is submitted to satisfy the contractual requirements of DRD 220-09. It is
also identified as Lockheed Report No. LG89ER0026.
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1.0 SUMMARY

Flight tests were performed to evaluate structural integrity and noise
characteristics of a large-scale, advanced, single-rotation propfan
designed for cruise flight at Mach 0.8, 10,668m (35,000 ft). This 2.74m
(9 ft) diameter propfan comprised eight, thin, swept, variable-pitch
blades mounted on an aerodynamically contoured spinner. The testbed
aircraft was a modified Gulfstream II business jet with the propfan drive
system mounted on the left wing. The flight test program included or
simulated the full range of flight conditions (takeoff, climb-out, cruise,
descent, and landing) anticipated for propfan powered aircraft.

The propfan was well-behaved structurally over the entire flight envelope
with blade response dominated by once-per-revolution (1P) loads. The
measured vibratory response showed expected trends with alrspeed, power,
rpm, and flight Mach number. Vibratory response variation with airspeed
and nacelle tilt angle was directly proportional to excitation factor, as
expected. The effect of inflow angle was strong.

Over a broad range of flight conditions, near-field noise and low-
altitude, far-field noise were dominated by tones at first blade-passing
frequency (BPF), but tones at higher harmonics were often distinguishable.
At the design cruise condition, a large area of the fuselage was exposed
to sound pressure levels (SPL) greater than 130 dB at first order BPF.

Cabin noise data also were dominated by blade order tones. For untreated
cabin walls, the interior noise spectra were similar to exterior spectra
with tone levels reduced by 25 to 30 dB. At the cabin noise levels
measured, structureborne noise was not a significant fraction of total
noise.

Fluctuating pressure levels (FPLs) were high on the wing surfaces imme-
diately behind the propfan tips, and a significant area of the wing was
exposed to FPL values greater than 140 dB.

Noise predictions generally underestimated ground SPL values and signif-
icantly underestimated FPL values in the propfan slipstream. For SPL
values on the fuselage, the methods tended to underpredict noise for high
power climb conditions and overpredict for high-speed cruise conditions.






2.0 INTRODUCTION

2.1 BACKGROUND

In response to national emphases on fuel conservation, the Advanced
Turboprop (ATP) Project Office was established at NASA Lewis Research
Center in the mid-1970s. The major objective of this office was to extend
the excellent low-speed propulsive efficiency of the propeller to high
subsonic speeds.

Working with Hamilton Standard, the SR (single rotation) series of high-
speed propellers were developed and were dubbed "propfans." Wind tunnel
model tests, combined with aircraft mission analyses, indicated that the
best of the propfans would permit fuel savings of greater than 20 percent
relative to equivalent-technology turbofan-powered transport aircraft
cruising at Mach numbers of 0.8, Furthermore, the wind tunnel tests
showed the propfans to be much quieter than any high-speed propellers
developed earlier. These advances in propeller technology resulted from
the use of very thin blades that were swept back radically in the outboard
region.

Prior to declaration that propfans were ready for application, NASA deter-
mined that two steps were necessary. First, there must be assurance that
the propfan blades--representing a radical departure in geometry from
earlier blades—-could be produced with the infinite-fatigue-life proper-
ties necessary for commercial aircraft. Second, more knowledge was needed
about the noise characteristics of propfans to determine {if: (a) the
cabin noise treatment weight penalties were acceptable, and (b) propfan-
powered aircraft could meet community noise standards.

To answer these questions, NASA established the Large-Scale Advanced
Propeller, or LAP, Program and the Propfan Test Assessment, or PTA,
Program. In the LAP Program, Hamilton Standard designed and built a 2.74m
(9 ft) diameter version of their SR-7 propfan; and in the PTA Program, the
Lockheed Aeronautical Systems Company developed a flying test platform for
the LAP and performed a series of flight research tests.

The LAP rotor, as shown in Figure 1, consisted of eight, thin, highly
swept blades, with tips designed to operate at helical Mach numbers of
almost 1.2 at the design flight speed of Mach 0.8 at 10,668m (35,000 ft).
The PTA aircraft was a Gulfstream II business jet that was modified to
mount the propfan propulsion system on the left-hand wing while retaining
the aft-mounted Spey engines as the primary power source. The propfan
was powered by an Allison 501-M78 turboshaft engine rated at 4475 kw
(6000 hp). The aircraft was extensively arrayed with microphones,
pressure transducers, and accelerometers, while the propfan blades were
instrumented with strain gages for the measurement of the desired research
data.

This report presents results from the flight test portion of the PTA
Program.
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2.2 OBJECTIVES AND SCOPE

The objectives of the PTA flight test program were to evaluate:

0 Propfan structural integrity
o Propfan source noise
o} Associated propfan-related cabin noise and vibration

o FAR-36 community noise

The flight test envelope for the major portion of the research tests is
shown in Figure 2. It was required that tests cover the propfan design
point of Mach 0.8 at 10,668m (35,000 ft), and it was desired that data be
obtained to Mach 0.85 at 12,192m (40,000 ft).

It was specified that flight research tests include four altitudes above
1524m (5000 ft), selected to cover the normal flight envelope of Figure 2
and, if possible, the extended flight envelope. At each altitude, at
least four Mach numbers were to be selected. It was also specified that
low-altitude tests should be conducted at a minimum of two altitudes to
define far-field, propfan-generated noise at stations consistent with the
FAR Part 36 noise measurement locations.

It was required that the test program provide a range of propfan excita-
tion factors from 2.0 to 4.0 (4.5 desired), and that the higher-order
vibratory loads of the propfan be in the range of 12 to 30 percent of the
total dynamic loads. Excitation factor (EF) is a parameter developed by
Hamilton Standard as a measure of unsteady aerodynamic loads on propeller
blades caused by flow nonuniformity and is discussed in more detail in
Appendix A.

In the PTA Program, a range of 1P excitation was provided by changing the
nacelle tilt angle in a vertical plane parallel to the fuselage centerline
plane. 1In this test program, a nacelle tilt of -l degree, relative to the
fuselage reference plane, was the baseline configuration. Two other
nacelle tilt angles (-3 and +2 degrees) were also tested. The desired
higher order excitation content was obtained by positioning the engine
inlet an appropriate distance behind the propfan plane.

Some ground tests are also described in this report. They were required
to:

e} Evaluate the relationship between wing excitation and cabin noise

0 Assess cross wind effects on propfan blade vibratory loads

o Screen for incipient propfan stall flutter in taxi tests

The airplane was extensively instrumented with 33 microphones inside the
cabin, 45 on the fuselage exterior surface, and 44 on the wing in the
regions washed by the propfan slipstream. Another 5 microphones were
placed in a boom on the left wing at a distance outboard of the propfan
equal to the distance of the propfan from the fuselage. Accelerometers
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were located at a number of positions on the wing and fuselage to measure
vibrations and to assess the significance of structureborne noise.

The propfan blades were instruménted with 30 strain gages distributed over
5 blades. OQutputs from these gages were continuously monitored by
Hamilton Standard personnel whenever the propfan was operated.

High-altitude flight research tests were flown from the Lockheed facility
at Dobbins Air Force Base, Marietta, Georgia. The low-altitude flight
research tests were flown from NASA's Wallops Flight Test Station, Wallops
Island, Virginia. First flight of the PTA aircraft was in March 1987;
flight research tests began in June 1987; and tests were completed in
March 1988.

Two additional flight tests were performed that were not part of the orig-
inal PTA Program. One involved noise measurements for a special acoustic
wall treatment that was installed in the PTA cabin. This wall treatment
was designed and built under a separate contract, NAS1-18036, from NASA-
Langley, and results will be reported under that contract. The second
flight test added was a high-altitude, en-route noise test performed in
cooperation with the FAA, and results will be reported by that agency.

Predictions were made of propfan vibratory blade stress, near-field sound
pressure levels on the surface of and inside the fuselage, fluctuating
pressure levels on the wing surfaces washed by the propfan slipstream, and
sound pressures on the ground for low-altitude flyovers. Comparisons of
predictions with measured data were made for a representative array of
test variables.

2.3 SIGNIFICANCE OF THE PTA FLIGHT RESEARCH PROGRAM

The PTA flight research program accomplished all of its technical objec-
tives. 1t demonstrated that advanced technology, high-speed propellers
can be developed that will operate safely through the entire operating
range of high-speed subsonic commercial aircraft. It also provided near-
and far-field noise data on a full-scale propfan that can be used to
update predictions that earlier were based on small-scale wind tunnel
tests.

Another accomplishment that may have great long-range significance was the
acquisition of a large amount of high-quality noise data for which test
parameters were systematically varied. The data analyses already per-—
formed have shown a good many areas where noise prediction methods are
inadequate, and in some cases have pointed the way to needed improvements
in analytical methods. It is expected that further analysis of this data
base can be very beneficial in developing better noise prediction methods.

An example of new insight that has been gained is the recognition, on the
basis of PTA data analysis, of the significance of inflow angularity not
only on blade loads, but also on propeller noise. The prediction codes
used did not adequately account for this variable; the PTA data will not
only provide insight for improvement of the codes, but also provide the
systematic data base against which improved codes can be evaluated.






3.0 TEST HARDWARE

3.1 LARGE-SCALE ADVANCED PROPFAN (LAP) DESCRIPTION

The large-scale advanced propfan, shown in Figure 1, was a 2.74m (9 ft)
diameter, 8-bladed, tractor-type propeller designed for a disk power
loading (power/D_2?) of 257 kw/m? (32 shp/ft?) at the Mach 0.80, 10,668m
(35,000 ft) cruise condition. It had a hydraulically-actuated blade pitch
change system and a hydromechanical pitch control that allowed the propfan
to operate in a speed governing mode.

Features of the structural configuration of the LAP blades are shown in
Figure 3. These include a central aluminum spar which forms the struc-
tural "backbone" of the blade, a multi-layered, glass-cloth-reinforced
shell overhanging the leading and trailing edge of the spar, a nickel
sheath which covers the leading edge of the outer two-thirds of the blade,
and a non-operational integral de-icing heater in the inboard leading edge
area. Though the scope of the LAP testing never included utilization of
the blade heaters, they were installed to evaluate the structural response
of a blade closely resembling that of a typical blade configuration. The
remaining internal cavities were filled with low-density rigid foam. The
outboard portion of the spar was intentionally moved forward toward the
blade leading edge to increase stability by reducing overhung mass in the
tip trailing edge, while at the same time increasing the integrity of the
leading edge from the standpoint of resistance to foreign object damage.

The blade design made use of a NACA Series 16 airfoil outboard and a
Series 65 circular arc airfoil inboard. Each blade had an activity factor
of 227.3 with 45 degrees of blade leading edge sweep at the tip. The
blades were designed with predeflection so that they would assume the
desired aerodynamic shape at the cruise operating condition.

A more detailed description of the LAP blades can be found in Reference 1.

3.2 PTA AIRCRAFT

The PTA testbed aircraft is shown in Figure 4. The testbed was developed
from a Gulfstream Aerospace GII business jet aircraft, with the PTA pro-
pulsion system installed on the left wing. The propfan was powered by an
Allison 501-M78B drive system (modified Model 570 industrial gas turbine
engine and a modified T56 reduction gearbox). The direction of propfan
rotation was up inboard.

This drive system was mounted in a forward nacelle compartment, identified
as the QEC or "quick-engine-change'" assembly. The installation was
designed so that the QEC could be tilted wup or down to change the inflow
angle to the propfan. As previously mentioned, this variation in nacelle
tilt was required to obtain the desired range of propfan blade loading.

The propfan installation on the 1left wing required some modification of
the wing structure to improve wing flutter stability. Further improvement

AL, e T T ) 7 phol__ D INTENTIONALLY BLARE



s rlockheed

in flutter margin was obtained by installation of a dynamic balance boom
on the wing tip. A microphone boom was also installed on the left wing
outboard of the nacelle at the same distance from the propfan as the
fuselage was on the inboard side of the nacelle. This boom contained five
microphones at the same longitudinal stations as five fuselage microphones
to assess the effect of propfan rotation direction on noise.

To partially offset the weight of the additions to the left wing, a static
balance boom was placed on the tip of the right hand wing. A flight test
instrumentation boom was located on the aircraft nose to measure velocity
and flow Iincidence angles. Over 600 channels of test data were tape
recorded on board the aircraft with approximately 250 of these channels
telemetered to the ground.



4,0 INSTRUMENTATION

4.1 PROPFAN INSTRUMENTATION

The propfan FM electronic instrumentation system provided the capacity to
transmit 33 channels of information from transducers on the rotating
portion of the propfan to data collection and monitoring equipment in the
stationary field. Electric power for the instrumentation system and sig-
nals from the transducers were transmitted across the rotating/stationary
interface by a brush block and platter-type slip ring assembly. The con-
figuration of the propfan allowed for only eight slip rings. The need to
transmit 33 channels of information, therefore, necessitated the use of
multiplexing. The DC signals from 32 of the transducers in the rotating
field were divided into two groups of sixteen and converted to frequency
modulated signals by voltage-controlled oscillators. Each group was then
multiplexed by a mixer, allowing 32 channels to be transmitted through two
slip rings. The groups of 16 channels were then detranslated in the
stationary field to 4 groups of 4 multiplexed channels (IRIG Standard/A
through 4A) for recording. Simultaneously, discriminators demodulated
each channel for real time monitoring of data. One discriminator was
tuned to the center frequency of each channel. A schematic of the elec-
tronic data acquisition system is presented in Figure 5.

The FM electronic instrumentation system provided inherent noise immunity
for data transmission. The frequency response of the system was 0 to
1000 Hz. Overall accuracy of the system was 13 percent RSS. Time corre-
lation between channels was t13.8 microseconds.

Transducers installed on the propfan included strain gages to measure
vibratory strain in the blade structure, pressure transducers to measure
the actuator high and low pitch pressures, a potentiometer to measure the
blade pitch angle, and a 1P sensor for measuring the propfan rotational
speed,

The instrumentation system allowed for up to 10 strain gages to be
installed on each blade, though a maximum of 30 gages were active at any
one time. Sixteen active gages could be selected from blades 1 through 4,
and an additional 16 could be selected from blades 5 through 8. Selection
of the desired combination of strain gages was accomplished using eight
programmable connectors mounted on the propfan hub. Programming of the
connectors required jumper wires to connect the sockets of patch boards in
the connectors. A total of 60 gages were applied to the propfan blades
for the PTA test program. The gages were located at points where high
stresses were predicted to occur for the various modes of aeroelastic
response; flatwise bending, edgewise bending, torsion, and additional
points to establish stress distributions. Strain gages were installed at
the same location on several different blades in order to provide redun-—
dancy in case of a strain gage malfunction. This redundancy also allowed
phase relationships between blades to be established and provided veri-
fication that similar aeroelastic phenomena were occurring at the same
locations on different blades.
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The gage locations are shown in Figures 6 through 9, and the active gages
are indicated. The inactive gages were positioned to be used as backups
in the event of primary gage failure. The strain gage pairs on the blade
shanks and "vee" shear pairs (Gages 65V and 66V in Figure 8 with their
counterparts at right angles) on the blade aerodynamic surfaces were wired
to act as one gage.

Data from the propfan instrumentation was recorded on a l4-track IRIG tape
recorder. Real time monitoring of data was accomplished using two, 4~
channel oscilloscopes and a spectrum analyzer. The oscilloscope provided
a time domain display of eight channels simultaneously. The spectrum
analyzer provided a frequency domain display of one channel at a time.

4.2 AIRCRAFT SURFACE PRESSURE AND FLIGHT CONDITION INSTRUMENTATION

The data acquisition system carried on board the aircraft is depicted in
Figure 10. Two primary multiplexing methods, Pulse Code Modulation (PCM)
and Constant Bandwidth Frequency Modulation (CBFM) were used to condition
the data signals for recording on 28-track magnetic tape. PCM was used
for low frequency signals and CBFM for the dynamic data with frequency
response to 2 kHz. Proportional bandwidth FM/FM telemetry was used to
transmit selected data channels to the ground station for real time
monitoring.

Steady-state static pressures were measured on the wing and propfan
nacelle. The locations of these measurements are shown in Figures 11
through 13. Pressures were referenced to the nose boom static pressure
and were measured with electronic scanning modules located in the wing
leading edge region. Pressures and temperatures were also measured inside
the PTA nacelle compartments.

Instrumentation was carried on board the aircraft to measure freestream
properties, flow incidence angles, aircraft pitch and bank angles, Spey
engine conditions, and control surface deflections. The propfan drive
system and its nacelle were instrumented so that engine and gearbox vibra-
tions and nacelle environmental conditions could be carefully monitored.

In addition to the surface pressure and Spey engine condition measurements
referred to above, the following propfan engine and flight condition
parameters were also acquired:

o} Propfan rpm

o] Engine torque

o Power lever position

e} Speed lever position

0 Sideslip angle

o Pitch angle

o} Indicated airspeed

o Mach number
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o} Aircraft CG vertical acceleration

o Ambient air temperature

o Ambient air pressure
These parameters were measured and recorded using Lockheed-installed
instrumentation and the Lockheed data acquisition system. Time correla-
tion between the Lockheed and Hamilton Standard measured parameters was

obtained by recording the Lockheed time code generator signal on the
Hamilton Standard data tapes.

4.3 AIRBORNE ACOUSTICS AND VIBRATION INSTRUMENTATION

To record acoustics and vibration data on the aircraft, there were 127
microphones, 99 accelerometers, and 14 strain gages that were distributed
as indicated in the table of Figure l4. Locations of this instrumentation
are shown in detail in the figures and tables of Appendix B.

The microphones used inside the cabin were Bruel and Kjaer prepolarized
condenser microphones that were accurate to 0.5 dB over the total fre-
quency range of PTA testing and somewhat better in the frequency range of
the propfan fundamental tone and first harmonic.

On the exterior surfaces of the fuselage and acoustic boom, Kulite
microphones of 0.254 em (0.1 in.) diameter were used. Slightly larger
wafer-shaped microphones (also Kulites) were wused on the wing to allow a
flush installation without penetration of the wing surface. The estimated
accuracy of measurements from flight to flight was usually within 1 dB.

The presence of these surface microphones on the wing and fuselage and
their known sensitivity to moisture damage necessitated the restriction
that the PTA aircraft operate only when there was no precipitation. On
ferry flights and other occasions when there was danger of encountering
precipitation, the exterior surface microphones were covered with a water-
proof tape.

4,4 ACOUSTICS GROUND INSTRUMENTATION

Ground instrumentation for the far-field acoustics measurement was arrayed
along the hard surface Runway 10-28 at NASA Wallops Flight Test Station as
shown in Figure 15. All test flights were flown along paths at right
angles to this instrument array. The inset of Figure 15(a) shows the
relative positions of the two microphone installations used for these
tests. Tripod microphones were mounted over grass at a distance of 2.44m
(8 ft) from the edge of the hard runway surface while the inverted micro-
phones were mounted on the runway at the same distance from the edge.

Details of the two microphone installations are shown in Figure 16. The
diaphragms of the inverted microphones were positioned 6 mm (0.25 in.)
above the hard surface. The other microphone of each pair was mounted on
a tripod so that the microphone diaphragm was l.2m (4 ft) above the grassy
surface and inclined slightly to present a grazing incidence to the
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propfan sound waves. These tripod microphones were also fitted with
windscreens. Four—track FM tape recorders were located at each microphone
station; two tracks to record the microphone signals, one for time codes,
and voice data and the fourth for tape speed compensation signals.

For the lateral noise attenuation measurements, it was important to have
microphones at large distances from the flyover path, so for these tests
the aircraft was flown over the west end of Runway 10-28 as indicated in
Figure 15(a). For the FAR 36 sideline noise tests, the aircraft was flown
along a path towards the midpoint of that runway so that data could be
recorded on both sides of the flight path at the same time.

4.5 AIRCRAFT SPACE POSITIONING MEASUREMENTS

For the low-altitude, far-field noise tests, a C-band transponder was
installed on the aircraft so that the aircraft could be tracked by the
Wallops Airborne Real-Time Radar Control system. This system provided
aircraft position data in terms of longitudinal, lateral, and vertical
distance from the reference station in real time. For backup, a video
camera was installed at the ground reference station to record the flight
of the aircraft as it passed overhead. Altitude over the reference
station was also measured with the aircraft's flight instrumentation.

4.6 METEOROLOGICAL INSTRUMENTATION

Meteorological data during the far-field noise tests were obtained from
the Wallops base weather station, a tethered balloon, and a free balloon.
The base station provided conditions at 10m (33 ft) above ground level,
updated at 20-second intervals, and displayed on TV screens. Post-test,
these weather conditions were available in a printed five-minute-average
format.

The tethered balloon permitted readings of temperature, pressure, relative
humidity, wind speed, and wind direction at specified intervals from 10m
(33 ft) to 457m (1500 ft) above ground level.

Free balloons were released prior to flight tests——primarily to determine
if meteorological conditions were appropriate for testing. These were
particularly helpful in identifying temperature inversions and in deter-
mining when the temperature gradients were within the allowable range.

12



5.0 TEST TECHNIQUES AND PROCEDURES

5.1 GROUND TESTS

5.1.1 LAP Structural Integrity Evaluation

Static and taxi tests were performed to measure propfan blade vibratory
stresses and extend the operational envelope of the blades. The initial
static tests were followed by taxi tests and then by crosswind tests. In
order to establish controlled conditions for the crosswind tests, the
propwash from a C-130 aircraft was blown across the propfan at several
crosswind angles in the arrangement shown in Figure 17.

5.1.2 Baseline Acoustics and Vibration Tests

One of the objectives of the acoustics program was to establish the trans-
mission paths for noise and vibration that entered the aircraft cabin
during flight. 1In order to accomplish this, it was necessary to perform
baseline ground tests. In these tests, the PTA aircraft was supported on
its landing gear in a hangar and subjected to acoustic and vibratory
signal inputs of known strength. For each input signal, accelerometer and
cabin noise readings were recorded. The experimental setup for these
tests is shown in Figure 18.

5.2 FLIGHT RESEARCH TESTS

In discussing test techniques and procedures, the flight research tests
are best described in terms of "high-altitude" and "low-altitude" tests
rather than in terms of test objectives—-primarily because a given test
was often used for more than one objective. Furthermore, the major
differences in techniques and procedures were more a function of test
altitude than other factors.

A general technique used in both high- and low-altitude tests dealt with
the inclusion of nacelle tilt angle as a primary variable. The nacelle
tilt provision was designed into the PTA alrcraft to permit a wide range
of dynamic loading environment for the propfan. The problems associated
with attaining this range and the need for the nacelle tilt can be illus-
trated with Figure 19, using the parameter, equivalent excitation factor,
or EFeq. Excitation factor is discussed in detail in Appendix A.

Figure 19 shows the variation of EF with altitude, Mach number, aircraft
gross weight, and nacelle tilt angle. For a given nacelle tilt angle, say
2 degrees, it can be seen that all of the other variables allow EFeq to
range only from about 3.5 to 4.5. Only by varying the angle of the
propfan rotor axis, or nacelle tilt, could the desired range of EFeq be
obtained. From the analysis shown in Figure 19, nacelle tilt angles of
+2, -1, and -3 degrees were chosen for the PTA aircrafe.

The requirement for higher order content in excitation factor was met
for the PTA aircraft by the 1location of the propfan engine inlet. The
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asymmetric disturbance produced by the scoop inlet behind the propfan
distorted the flow sufficiently to produce the desired higher order exci-
tation. Guidance for 1inlet location was obtained from the small-scale
model tests reported in References 2 and 3.

In all of the flight tests, critical parameters relevant to the propfan
propulsion system and to propfan blade stresses were monitored in real
time aboard the aircraft.

5.2.1 Low—-Altitude Tests

The low-altitude flight research tests were conducted at the NASA Wallops
Flight Test Station in Virginia because of the relatively low background
noise and favorable topography in that location. The test plan is shown
in Figure 20. After initial trial flights, however, it was concluded that
the lowest safe test altitude (with allowance for engine failure) was the
305m (1000 ft) level. Test altitudes, therefore, ranged from that level
up to 488m (1600 ft) AGL. All tests were planned for an airspeed of 361
km/hr (195 KCAS) with landing gear and flaps retracted.

Atmospheric conditions specified for the tests were:
o No precipitation
o No obvious gusts in the test area

o} Wind speed 6.2 mps (12 kts) or less with crosswind component
3.1 mps (6 kts) or less at 10m (33 ft) above the ground

0 No temperature inversions or cloud layers within 914m (3000 ft)
AGL

0 Ambient temperature between 4.4°C (40°F) and 38°C (100°F) at 10m
(33 ft) AGL

o Relative humidity less than 95 percent
Terrain conditions satisfied the following requirements:

o The ground plane elevation of all microphones was within 6.1m
(20 ft) of the ground reference point

o} Ground cover was predominantly grass mowed to a height of less
than 15.2 cm (6 inches)

o There was no standing water, dew, or frost within 30.5m (100 ft)
of the lines through the ground level microphone stations

For all of the flights with propfan power on, the Spey engines were set at
"soft idle" power.

14
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Ground microphone data were measured by tape recorders at each ground
station. Data records at these stations were synchronized with the air-
craft on-board data and with the Wallops data recording system.

A special test technique was required for the propfan power-off data
because it was desired that these data provide a baseline noise measure-
ment with the GII's Spey engines at soft idle. Since the aircraft could
not sustain level flight with these engine settings, the procedure
depicted in Figure 21 was employed. For each of five test distances from
the ground reference station, the aircraft started at an altitude higher
than the test altitude, reduced power, and glided through the test point.

Flight paths are depicted in Figure 22. To obtain data on lateral noise
attenuation, the aircraft was flown along Path A at the west end of the
runway along which the microphones were arrayed. For the FAR 36 overhead
and sideline noise data, the aircraft was flown along Path B so that
ground data could be obtained on both sides of the aircraft simulta-
neously.

Aircraft performance data, propfan propulsion system data, meteorological

data, and acoustics data were examined daily to insure that test condi-
tions were within prescribed limits. Tests were rerun where necessary.

5.2.2 High-Altitude Tests

All of the high-altitude flight research tests were conducted from the
Lockheed flight test facility at Dobbins Air Force Base in Georgia. The
flight test envelope and the test parameter variations are shown in
Figure 23 for the nacelle tilt angle of -1 degree and in Figure 24 for
nacelle tilt angles of +2 and -3 degrees. Bare-wall cabin interior noise
spatial surveys were made for the flight conditions shown in Figure 25.
The effects of aireraft yaw angle on noise and blade stresses were
assessed in the test program depicted in Figure 26.

The general test technique was to measure propfan blade stress and noise
and vibration at each test point. Data were recorded for approximately
60 seconds after the aircraft was stabilized on a test point. The Spey
engine on the left side of the aircraft was always operated at the lowest
power setting required to maintain level flight so that the propfan noise
signal would be as strong as possible relative to background noise. To
evaluate background noise, the test points shown in Figure 27 were flown
with the propfan blades removed.

As in the case of the low-altitude tests, data were examined after each
day's flight to determine the need for retest.
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6.0 DATA ANALYSIS AND PREDICTION METHODS

6.1 PROPFAN BLADE RESPONSE

6.1.1 Propfan Test Data

Data analysis for the large quantity of data collected during the test
proceeded as follows. Initially, strip charts of total vibratory strain
were made for key strain gage locations for all test conditions. These
strip charts served as a pre-screening tool to assess the quality of the
data and to examine transient conditions. Figure 28 shows a typical
sample of the strip chart record. As shown by the strip chart, each data
record consisted of a 30- to 60-second sample during stabilized flight.
Any variation in vibratory amplitude over a record indicated that condi-
tions were not stabilized for the data record.

After reviewing the strip charts, the data were statistically analyzed to
obtain the data sample average (DSA), or average peak vibratory amplitude.
All of the strain gages for all test conditions were reduced to values of
DSA. This corresponds to over 20,000 data records for the test.

To further study the blade response, selected data records were reduced by
Fast Fourier Transform (FFT) methods to obtain the frequency and amplitude
of the vibratory response. The frequency and amplitude data was used for
comparisons with predictions as well as evaluations of the way harmonic
content varied with operating condition.

6.1.2 Propfan Response Prediction

The calculation technique used to predict blade vibratory response
involved the following automated procedure. The prediction code used an
iteration scheme which required four steps per iteration. The first step
required the calculation of steady-state aerodynamic loads from the
Hamilton Standard steady aerodynamic code wusing appropriate operating
conditions and an initial guess of the blade deflected geometry. The
second step distributed the aerodynamic loads on a finite element model of
the blade in its undeflected (as manufactured) position; and in the third
step, the blade deflection due to the applied aerodynamic load was calcu-
lated. The final step determined a new set of aerodynamic loads from the
deflected blade geometry so that the iterative process could start again.

When the deflected blade geometry did not change from one iteration to the
next, the iteration was terminated. This procedure assured that the blade
deflections were consistent with the aerodynamic loads. At this point,
the steady-state blade operating position was determined for the desired
test conditions.

After the steady-state iteration was completed, the unsteady aerodynamic
loads were calculated with the Hamilton Standard multi-azimuth unsteady
aerodynamic deck. The calculation of unsteady aerodynamic loads required
a flow field defined at the propfan plane of rotation. The flow fields

PRECEDING PAGE BLANK NOT SILMED
o Lt L;{ _Wiﬁitﬂ’!ﬂﬂw BLANS



S rlockheed

were supplied by Lockheed in the form of tables, one table for each
nacelle tilt angle setting, in the axial and tangential directions with
respect to the propfan plane of rotation. Given the measured aircraft
operating conditions, this allowed interpolation of the flow field for any
Mach number from 0.2 to 0.85 at each nacelle tilt angle (-3 degrees,
-1 degree, and +2 degrees). The output unsteady aerodynamic loads were in
the form of in-plane and out-of-plane harmonic 1loads for the first four
harmonics of rotation or propfan speed.

Each harmonic load component was distributed separately on the finite
element blade model, and a direct forced response calculation was per-
formed for each of the first four harmonics of rotation to determine blade
vibratory stressing. Steady-state blade deflections were assumed in
calculating unsteady aerodynamic loads.

It should be pointed out that whenever calculations are compared to
measurements, differences arise both from inaccuracy in measurements and
limitation in analyses. To correlate with measured strain, the analysis
required a full description of the flight operating conditions. Therefore,
the calculated results contained the combined errors in measured airspeed,
temperature, pressure, pitch angle, yaw angle, power, and rotational
speed.

6.2 ACOUSTIC DATA

Acoustic data for the several types of measurements and tests required
different analysis and prediction techniques. 1In this section, therefore,
general data analysis methods are described, and in later sections
additional detail is provided where appropriate to describe techniques
specific to different kinds of tests.

6.2.1 Acoustic Data Processing

The acoustic data acquisition system on board the PTA aircraft is shown in
the block diagram of Figure 10.

At the Lockheed ground facilities, the backbone of the acoustic data
processing system was a Digital Equipment Corporation VAX-based computer
system. The VAX facility consisted of a large VAX-11/780 computer
connected via a DECnet communications interface to a VAX-11/750 computer.
The VAX-11/750 was interfaced to analog-to-digital conversion equipment, a
PCM decommutation station, and a group of acoustic FFT analyzers. The
computers also shared a large disk storage system for test data storage,
and each in addition had its own assortment of peripheral devices which
included tape drives, disk drives, line printers, electrostatic plotters,
and computer terminals.

The data processing work was accomplished primarily using the VAX-11/750
portion of the system. As noted previously, the acoustic and vibration
data were recorded by frequency modulation (FM) subcarrier oscillators
using constant-bandwidth frequency division multiplexing techniques. The
performance and environmental data were recorded by pulse code modulation
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(PCM) time-division techniques. Both types of data were recorded on the
same 28-track magnetic tape time correlated by IRIG-B time code.

The acoustic and vibration magnetic tape data were replayed into a sub-
carrier discriminator system, one l0-channel track at a time. From the
discriminators, the data were processed by a bank of five dual-channel,
800-1line, 5000 Hz real-time, digital FFT analyzers. These HP Model 3562
narrow-band analyzers were operated in a spectrum analysis mode using
Hanning windowing, 40 or 50 averages with 50- to 60-percent overlap, and a
frequency range of 0 to 2000 Hertz which resulted in an effective band-
width of 3.75 Hertz. All five units were interfaced via an IEEE 488
interface to the VAX computer and the plotters. Under computer control,
the digital FFT data were transferred to the VAX disk files. A separate
1/3-octave analyzer (BK Model 2131) connected to the IEEE bus was used for
processing the far-field noise data, using 1/2-second integration at
1/2-second intervals, and a frequency range of 25 to 10,000 Hertz.

Digital spectral data were compiled in the aforedescribed manner for all
transducers for selected flight conditions and for selected transducers
for the remaining flight conditions.

For the PCM-acquired data, a decommutation station interfaced to the VAX
computer was used to input the demultiplexed data along with the time
code. A Lockheed-developed software package was used to control and
process the data. The engineering unit data, stored as time histories on
disk files, were then transferred to report-quality printers. Tabular
lists of the values of the important operational parameters were then made
for every test run flown in the flight research program. An example is
shown in Figure 29.

6.2.2 Processed Data OQutput Format

The principal medium of display of the near-field acoustic data was a
machine plot of narrow-band sound pressure level versus frequency, with a
companion tabulation of the values of the important operational param-
eters, as exemplified in Figure 30.

A computer code was written that read and compiled the amplitude and
frequency of the blade-order peaks in the spectral data. Tabular listings
of these "peak data" were generated for all transducers and all operating
conditions for which data were processed and filed. An example is shown
in Figure 3l.

The principal medium of display of the far-field acoustic data was a
machine plot of level versus time for "A" weighted sound pressure level
(dBA), overall sound pressure level (dBOA), and tone-corrected perceived
noise level (PNdB). An example is shown 1in Figure 32. Such plots were
made for all ground microphones and all low-altitude test conditions.

From these time-history plots, time increments were selected at which

1/3-third octave band spectra were machine plotted. A companion tabu-
lation of the values of the important operational parameters was printed
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on the same plots. An example is shown in Figure 33. Plots of this type
were made for selected microphones and conditions.

The far-field acoustic time history data and computed metrics quantities
were also tabulated for all microphones and all flight conditions. An
example is shown in Figure 34. :

In order to study how noise was influenced by various operational param-
eters, a computer code was developed that compiled and plotted acoustic
data as a function of any desired parameter and printed the values of the
"non-varied" parameters on the same plots. An example of a near-field
noise parametric plot is shown in Figure 35. A far-field (flyover) noise
parametric plot is shown in Figure 36.
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7.0 RESULTS AND DISCUSSION

7.1 PROPFAN BLADE STRUCTURAL TEST RESULTS

7.1.1 Blade Vibratory Response

The flight test matrix is shown 1in Figure 37. Each test condition shown
in Figure 37 represents a data sample where stabilized flight was obtained
at one or more variations of power, rotational speed, or nacelle tilt
angle. The data were obtained so that parametric evaluations could be
made to study the influence of Mach number, equivalent airspeed, power
(torque), and rotational speed.

As mentioned previously, the strain gage data were reduced to obtain a
"data sample average" (DSA) of the total vibratory strain at a stabilized
flight condition. Figures 38 through 40 summarize the DSA straln data for
the inboard bending gage (Gage 1l1) over the entire flight envelope for the
three nacelle tilt angles. These data show that nacelle tilt has a large
effect on the vibratory response of the propfan. Upcoming discussions
will clarify the trends in the measured strains that are shown in these
figures.

Figure 41 shows the typical frequency content of the measured vibratory
response of the blade 1inboard bending strain gage during flight. The
figure shows that the response was characterized by peaks at integer
multiples of the rotational speed and that the first harmonic (1P)
dominated the response. A comparison of measured and calculated mid-chord
strain for the above and other conditions establishes the relative
importance of the strain gage locations and the harmonic content of their
response.

Figures 42 through 44 show calculated and measured 1P and 2P vibratory
strain plotted versus non-dimensional blade radius for a 1.5 km (5000 ft)
altitude, Mach 0.30 airspeed, maximum continuous power, 100-percent prop-
fan speed, and nacelle tilt angles of -3, -1 and +2 degrees, respectively.
As can be seen on all three figures, the measured 1P strain distribution
exhibits a peak near the &42-percent radial station, and the strain
decreased toward the blade tip until the outermost strain gage shows a
slight upward trend in measured strain.

The calculated strain follows a similar distribution, but at a 15-percent
higher level inboard on the blade, tapering to 5-percent higher in the
mid-blade region, and showing lower strain at the blade tip. The calcula-
tion does not show the strain rise at the blade tip, indicating that the
local tip loading is higher than predicted. This is possibly due to some
three dimensional and/or vortex action, as evidenced in previous tests,
that is not included in the current aerodynamic methodology.

The 2P correlation was good for the -3 degree and -1 degree nacelle tilt

angles, but underpredicted the strain in the tip region of the blade at
the +2 degree nacelle tilt angle. The +2 degree nacelle angle 2P results
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are trivial, however, because of the low amplitude response of the 2P
harmonic at that condition.

Figure 45 shows curves of the test and calculated 3P and 4P vibratory
strain versus non-dimensional radius at the 1.5 km (5000 ft) altitude,
Mach 0.30 airspeed, and -1 degree nacelle tilt condition. The strain
scale of Figure 45 has been reduced to 100 micro-strain because of the low
amplitude response of the third and fourth harmonics. The 3P harmonic was
overpredicted and the 4P harmonic underpredicted. The majority of the
predicted test points gave similar results for the 4P harmonic. Both
calculated and test amplitudes, however, were at negligible levels.

The Campbell plot, Figure 46, obtained from PTA ground testing shows a
3P/first edgewise critical speed at 100-percent propfan speed. All of the
test points chosen for predictions were at 100-percent propfan speed with
the exception of the points selected to analyze the effect of propfan
speed. As shown by Figure 45, the predictions at 100-percent speed
overpredicted the strain values because of this critical speed. This
overprediction arose from the lack of damping in the structural and aero-
dynamic model of the SR-7L blade used in the prediction code. The exact
location of the 3P critical speed changed with each unique operating
condition, and as a result, the degree of error at the 100-percent speed
condition changed greatly from case to case. Since the test data showed
that the primary vibratory blade strain was at the 1P frequency and that
the highest strain occurred on the inboard portion of the blade, the
remaining flight test discussion focusses on 1P inboard blade and shank
response trends.

As discussed in Appendix A, the key parameters that influence blade 1P
response are equivalent airspeed and nacelle tilt (inflow) angle. Other
secondary parameters are power, Mach number (compressibility), and rota-
tional speed. The effect that equivalent airspeed and nacelle tilt had on
the blade response is shown in Figures 47 and 48 for a low-altitude climb
condition and a high-altitude cruise condition. The general shape of the
response curves with equivalent airspeed 1is similar for both altitudes.
For the -3 degree tilt angle, the strain level initially decreased with
airspeed and then began to increase rapidly as airspeed increased, while
the -1 degree tilt curves show a relatively flat response with a slight
decrease in strain at an intermediate airspeed. The +2 degree tilt angle
shows a steady decrease in strain over the entire airspeed range. The
importance of nacelle tilt is brought out when the design cruise altitude
condition of 10,668m (35,000 ft) 1is examined in Figure 48, A 2 degree
decrease in tilt from -1 degree to -3 degrees at the highest speed nearly
doubled the blade response. Proper choice of tilt angle significantly
affects the overall design of an installation.

To further clarify the relationship between excitation factor and blade
response, the relative excitation factor for the three nacelle tilt angles
is illustrated in Figure 49. Changes in the magnitude of vibratory
response correspond to the absolute value of the excitation factor. The
blade response reached a minimum when the EF passed through zero. The
-3 degree nacelle tilt EF passed through zero at the lowest airspeed while
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the +2 degree nacelle tilt EF never passed through zero. Comparing
Figure 49 to Figures 47 and 48 leads to the conclusion that the trend of
propfan response to changes in nacelle tilt angle was as expected.

The sensitivity of blade response to nacelle tilt is shown in Figures 50
and 51 along with a comparison to predicted values of strain. Figure 50
shows the 1P and 2P response variation with nacelle tilt for an initial
climb condition of maximum continuous power at 1.5 km (5000 ft) altitude
and Mach 0.3. The 1P strain increased with increasing tilt angle at a
rate of approximately 25 micro-strain per degree of tilt.

Figure 51 shows the 1P and 2P response variation with nacelle tilt for a
cruise condition of 10.7 km (35,000 ft) altitude and Mach 0.8. 1In this
figure, the measured 1P strain forms a parabola around the -1 degree tilt
angle with a strain increase of approximately 60 micro-strain per degree
of tilt on either side of the minimum. The increased sensitivity at high
speed is due to the high dynamic pressure at these conditions and can be
related back to the EF which shows a linear increase with tilt but a
quadratic increase with equivalent airspeed. In both figures, the 2P
strain is low and relatively unaffected by the large nacelle tilt changes.

The correlation of predicted and measured 1P strain 1is better at the
low-speed conditions in Figure 50 than at the high-speed conditions
in Figure Sl. To get a better understanding of why the measured and
predicted values differ, the excitation factors resulting from the calcu-
lations were examined for a number of operating conditions. The computed
excitation factors showed that for the calculations to better correlate
with measurements, the assumed negative tilt angle would have to be
increased. This suggests two areas in need of improvement that would
ultimately improve the correlation. One is that the nacelle tilt used in
the calculation of the flow fields could be improved, and secondly, the
measurement of aircraft pitch and yaw angles could be improved. It should
be noted that the aircraft pitch and yaw measurements, together with the
nacelle tilt measurement, had an accuracy of plus or minus 0.5 degree, and
these values were used directly to compute the flow fields needed for the
1P calculations. In terms of accuracy of the predictions, this puts an
error band of plus or minus 15 micro-strain around the 1.5 km (5000 ft)
calculations in Figure 50 and an error band of plus or minus 30 micro-
strain around the 10.7 km (35,000 ft) calculations in Figure 51,

After equivalent airspeed and nacelle tilt, power had the greatest effect
on blade 1P response. Power 1is a strong factor because the cyclic loads
are influenced by the propfan induced flow. As power is raised, the
induced flow increases causing the 1P loads to increase. At low-speed
climb conditions, the loads increase approximately with the square root of
the power ratio. As flight speed increases, induced flow becomes less
important, and the rate of increase with power falls off., Figure 52 shows
the effect that engine torque, which at constant rotational speed is
synonymous with power, had on the low-speed and high~speed 1P response of
the propfan. At low speed, the strain increased at approximately the
square root of the power ratio, but at high speed, power had very little
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effect on the response. Calculations that were performed for the low-
speed conditions showed a similar, but not as strong, effect as that
displayed by the test data. The differences between test and analysis

became substantial at low power where the propfan was almost windmilling.

To gain an understanding of the importance of a calculation scheme that
assures consistent blade deflection and loads, the maximum camber values
were plotted versus nondimensional blade radius for the above torque
conditions in Figure 53. There was a substantial increase in camber as
torque was increased, especially at span locations below 75 percent.
Since camber is a measure of the chordwise curvature, it is directly
related to the chordwise bending deflections. This figure i1llustrates the
importance of the calculation of the steady-state blade deflected position
because of the impact the deflections have on camber and therefore on
aerodynamic loading.

The 1P and 2P calculated flatwise shank moment amplitudes are plotted in
Figure 54 along with test data versus percent propfan speed at an airspeed
of Mach 0.3, 1.5 km (4922 ft) altitude, and maximum continuous power.
Both test results and calculations show that rotational speed has little
effect on the 1P response. Through some analytical steps, it can be shown
that the change in 1P loading for a propfan blade is not directly related
to the relative blade section velocity, which contains both freestream and
rotational speed components, but is directly related to the freestream
velocity as implied by the excitation factor and shown in the data.

The comparison in Figure 54 of 2P test data to calculated values corre-
lates well at propfan speeds above 88 percent. At 78-percent speed, the
calculated amplitude was substantially overpredicted. This result 1is due
to the fact that the structural model of the SR-7L blade had no damping
properties, and operating at 78-percent speed, the blades were near the
2P/first flatwise critical speed. The 2P test data did not show a large
increase in amplitude as the propfan speed was decreased to 78-percent
speed. The calculated 2P curve peak location suggests that the calculated
2P/first flatwise frequency was too high.

Figure 55 shows the 1P, 2P, and 3P flatwise shank moment test data plotted
versus percent propfan speed at the design cruise point of Mach 0.8,
10.7 km (35,000 ft), and maximum continuous power. The high-speed condi-
tions show similar amounts of 1P and 2P excitations for the -1 degree tilt
angle, and also show negligible 3P excitation.

Figure 56 shows curves of 3P and 4P edgewise shank moment variation with
propfan speed for the Mach 0.3, 1.5 km (4921 ft) altitude condition dis-
cussed above. The 3P amplitude was overpredicted at the 3P/first edgewise
critical speed near 100-percent propfan speed but correlated well at
speeds up to 94 percent. Again, as was the case with the 2P critical
speed, the calculated 3P amplitudes were much higher than test values at
resonance (critical speed) because of the lack of damping in the blade
model. It also appears that the calculated 3P/first edgewise resonant
frequency was too low, considering where the 3P amplitude peak is located
from the test data.
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The 4P calculations in Figure 56 are in reasonable agreement with test
data although the amplitude levels were low compared to the first two
harmonics of propfan speed.

The lack of influence of compressibility on 1P response is shown in
Figure 57 where shank flatwise vibratory moment is plotted against Mach
number for the same equivalent airspeed. The test and analysis conditions
used to create this plot were all at 100-percent rotational speed,
constant equivalent airspeed of 126 mps (250 KEAS), but at different
altitudes so that the speed of sound changed. The only factor that was
not held constant, although it would have been desirable, was power, which
decreased with Mach number. The 2P amplitude decreased as the Mach number
increased and torque decreased. At this equivalent airspeed, with a
-3 degree nacelle tilt angle, the 1P excitation was near the minimum value
at the tested altitudes. This 1low excitation factor resulted in low 1P
amplitudes over the wide Mach number range tested.

7.1.2 Propfan Aerodynamic Performance

Power coefficients for the propfan are presented as functions of blade
angle and are compared to predictions in Figures 58 through 60. A smooth
variation of power coefficient with blade angle was observed. The dis-
crepancy between the measured and predicted power coefficient distribution
is attributed to inaccuracies in the measurement of blade angle and the
measured parameters: torque, rpm, airspeed, and density ratio, which are
used to compute power coefficient and advance ratio. Periodic checks of
the blade angle calibration, which were conducted during the course of the
test, indicated up to a tl degree potential error in measured blade angle.
A system accuracy analysis, which considered the individual errors in each
of the measured quantities, indicated that a possible overall error of
+.09 was possible in power coefficient. In addition, the effect of blade
deflections were neglected in aerodynamic performance calculations for
these off-design operating cases.

7.1.3 Conclusions - Propfan Structural Response

The test results showed that the propfan was well behaved structurally
over the entire flight operating envelope. The blade response was domi-
nated by 1P, and in some cases 2P, loads while all other harmonics were
negligible. The measured vibratory response showed expected trends with
airspeed, nacelle tilt, power, rpm, and Mach number.

The propfan vibratory response variation with airspeed and nacelle tilt
followed the trend expected by an examination of excitation factor. The
greater the excitation factor the greater the blade response. The data
confirmed the high sensitivity that response had to changes in the nacelle
tilt angle. For this installation, a -1 degree tilt of the nacelle was
near-optimum to reduce lP response in the flight envelope.

The flight test results also showed the effect of power at low speed on
the 1P response, and that the power effect diminished as the airspeed was
increased. The rotational speed and Mach number were shown to have little
effect on the response of the propfan.
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The comparison of test data to predictions showed that the analysis pre-
dicted trends with airspeed, nacelle tilt, power, rpm, and Mach number
very well, but the calculations tended to overpredict the inboard response
by about 15 percent at low speed. The inaccuracy of the aircraft angle of
attack measurement at high speed, coupled with a high sensitivity of blade
strain to this angle, prevented a fair comparison of measurement to pre-
dictions. The predictions also showed that the blade tip response was
underpredicted indicating that the loading distribution on the blade may
not be adequately defined.

7.2 ACOUSTICS TEST RESULTS

7.2.1 Par-Field Noise

7.2.1.1 Data Analysis Techniques

The objective of the far-field noise tests was to measure and determine
characteristics of propfan noise. Extracting propfan noise from other
noise sources, however, required some special techniques in testing, data
acquisition, and data analysis. These techniques are described in this
section.

Flights were conducted in two phases: (1) propfan blades installed, and
(2) propfan blades removed. The purpose of the second phase was to
estimate the noise generated by components other than the propfan. The
Wallops airport lent itself best to test flights from north to south, but
some flights were flown in the opposite direction, and some flights were
flown with rearranged microphone 1locations in order to study acoustic
characteristics on both sides of the flight path. The table of Figure 61
together with the test outline of Figure 20 illustrate the test conditions
for flights with propfan installed and with propfan blades removed,
respectively.

Total Aircraft Noise - Ground acoustic data were obtained for 14 micro-
phones at 7 microphone 1locations. The operating parameters were varied
within the ranges shown below:

Propfan shaft power: 1790 kw (2400 hp) to 4474 kw (6000 hp)
Propfan helical tip Mach number: 0.631 to 0.819
Propfan rotational tip speed: 188 mps (616 fps) to 256 mps (841 fps)
Nacelle tilt angle: -3, -1, and +2 degrees
Sideslip angle: -4.82 degrees to +2.46 degrees
Angle of Attack: 3.80 degrees to 7.10 degrees
Altitude: 256m (840 ft) to 524m (1720 ft)
For data analysis purposes, the definition of nacelle tilt angle, angle of

attack, and sideslip angle are illustrated in Figure 62. All flights were
level flights with: (1) landing gear and flaps retracted, (2) flight Mach
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number nearly constant at 0.31, and (3) Spey engines operating at "soft
flight idle." A total of 157 test runs with varying parameters were flown
with the propfan operating.

The measured acoustic data were reduced as 1/3-octave band spectra at
every 1/2-second interval using 1/2-second linear integration for about
50 seconds (starting at 25 seconds before the aircraft arriving at the
reference flyover microphone until 25 seconds after the aircraft passed
the reference microphone). Using these spectra, time histories of OASPL,
dBA, and tone-corrected perceived noise levels (PNLT) were computed.
These data, along with 1/3-octave band spectra at selected times, were
examined closely for all the 14 microphones to identify any anomalies in
the test data. Typical time histories and 1/3-octave band spectra were
shown in Figures 32 and 33.

The data of Figures 32 and 33 include the noise sources of airframe,
Spey engines, and propfan drive engine, in addition to the propfan. The
results indicate that peak noise was measured close to the overhead
position at the time of sound emission. From the spectra, the propfan
blade-passing-frequency tone (BPF) 1is clearly distinguishable from the
other sources, and in many cases, the SPL at the second blade passing
frequency is also distinguishable. Higher harmonics, however, are not
identifiable from these data.

Non-Propfan Noise - The significance of aircraft noise other than from the
propfan (airframe and Spey engines, for instance) was evaluated by con-
ducting flight tests under conditions similar to those for total noise,
but with propfan blades removed.

Level flight tests were first conducted by operating the Spey engines at
the minimum power required. Then a series of flights were conducted with
the Spey engines operating at "soft flight idle" power. This required the
gliding flight technique discussed in Section 5.

For all these flight runs, acoustic data at seven microphone stationms,
radar data (to identify the aircraft position as a function of time), and
aircraft performance data were obtained. The ground-measured acoustic
data were reduced as 1/3-octave band spectra at every l/2-second interval
using the same procedures as for total aircraft acoustic data. :

Propfan Noise Extraction - To compare the total aircraft acoustic data
with the data from flights with propfan blades removed, the data were
normalized to 304.8m (1000-ft) radius as free-field, lossless data. This
required first determining the emission angle, the emission time, and the
corresponding airplane coordinates from radar data. The acoustic data
were then corrected for atmospheric attenuation and spherical divergence.
To minimize the ground reflection effects as functions of frequency and
incidence angle, only inverted ground microphone data were used. Ground
reflections were assumed to be 6 dB and independent of frequency and
incidence angle. The coordinate system for normalized data is illustrated
in Figure 63.
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The lossless data exhibited some wunusually high sound pressure levels as
shown in Figure 64. The 1/3-octave band spectra from the flyover micro-
phone, at the emission time corresponding to the minimum distance, are
compared with and without atmospheric corrections. It may be observed
that the lossless spectra in the range from 500 Hz to 3150 Hz remain
constant, and beyond 6300 Hz, the sound pressure levels actually increase.
This phenomenon is not an expected characteristic of any noise sources
from the airplane. After studying the data for several microphones and
several flight conditions, it was concluded that the sound pressure levels
in the range of frequencies greater than 1000 Hz were not generated by
airplane sources. It is conjectured that this is ambient noise (including
instrumentation noise). Therefore, the far-field acoustic data were
studied only in the frequency ranges from 50 Hz to 1000 Hz.

Using the two Spey engine power conditions (soft flight idle and minimum
power for level flights), the effect of the Spey engine power (with
propfan blades removed) was determined by comparing normalized 1000-ft
radius, free—-field, lossless data at various polar angles. Figures 65(a)
through (c) illustrate 1/3-octave band spectral comparisons in the flyover
plane for three different polar angles. The differences are small in the
forward quadrant but increase in the aft quadrant. While it was beyond
the scope of this research to investigate Spey engine noise character-
istics, these comparisons aid in evaluating whether the level flight data
may be used in identifying propfan generated sound pressures. It can
be seen in Figure 65 that the gliding flight data must be used. Close
examination of these data shows evidence of tones near the frequencies of
80 Hz and 400 Hz.

To investigate these tones, the acoustic data from all seven ground
microphone stations for the four runs were reduced as normalized 1000-ft
radius, free-~field, lossless, 1/3-octave band spectra as functions of
polar and azimuthal angle. Doppler corrections were not applied to these
data. Typical data are shown in Figure 66. These data are for the fly-
over plane (azimuthal angle ¢ = 90 degrees) and polar angles approximately
equal to 35 degrees and 90 degrees. The directivity in the flyover plane
as a function of polar angle indicated that the frequency band of the tone
level changed from 500 Hz in the forward quadrant to 400 Hz when the
aircraft was overhead as expected from Doppler frequency shift effects for
sound radiating from the airplane. Therefore, it was concluded that this
tonal noise was generated at the airplane and propagated to the micro-
phone. No further analysis was conducted to identify the characteristics
of this particular source. In the propfan noise data analysis, however,
one should use caution in evaluating the propfan noise at or near 400 Hz.

Relative Magnitude of Propfan Noise - The l/3-octave band spectra of total
aircraft noise with the propfan at maximum power, and M = 0,76, were
compared with those of measured noise with propfan blades removed. This
was accomplished by selecting similar operating conditions and using the
1000-ft normalized acoustic data. Typical comparisons are shown in
Figures 67(a) through (c) in the flyover plane (¢ = 90 degrees) for three
polar angles. As discussed in the previous section, the sound pressure
levels in the high frequency range appear to be contaminated by background
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noise. The spectral comparisons in the forward quadrant (Figure 67(a))
indicate that the total aircraft noise in the frequency range of propfan
blade passage frequency (200, 250, or 315 Hz) was about 10 dB higher than
the noise levels without propfan blades. In other frequency bands, how-
ever, propfan—off noise was higher than that with propfan on. This may
have resulted from sources like engine inlet cavity noise when the propfan
engine was shut down. In comparisons at the polar angles near 90 degrees
(where the noise levels are expected to be maximum), propfan-on noise was
clearly higher than that with propfan-off 1in the frequency range greater
than 100 Hz (see Figure 67(b)). The comparisons in the aft quadrant
(Figure 67(c)) also show that the propfan-on noise was higher than that
for propfan—off.

These comparisons indicate that in most cases, the peak OASPL of the total
aircraft noise was dominated by a discrete tone sound pressure level at
BPF. In certain cases, the discrete tone sound pressure level at twice
BPF was also distinguishable from the other sources. Because of the
background noise and other anomalies, it 1is not possible at this time to
completely separate the propfan-alone noise throughout the frequency range
of 50 Hz to 10,000 Hz. Therefore, the OASPL of total aircraft noise was
used to study the variation and trends of propfan noise discrete tones.

7.2.1.2 Propfan Noise Characteristics

Directivity in the Azimuthal Plane - Noise directivity in the azimuthal
plane was derived using the data from seven ground (inverted) microphones.
The sound pressure levels (SPLs) used were obtained at the time of peak
OASPL in the time history. The data were gathered from various flights
where operating parameters fell within a specified narrow range. Curves
are drawn through these data points using least square fits as shown in
Figure 68. These data are for =1 degree nacelle tilt, maximum propfan
power, and tip Mach number of 0.760. It may be observed that the sound
pressure levels are higher by about 4 dB on the starboard side than on the
port side. It is believed that this is primarily an inflow angle effect.

Directivity in the Polar Plane - The directivity in the polar plane was
derived from the time history data. The data were reduced to 1000-ft
radius as a function of polar angle using radar data. These data show
that the noise levels are higher in the aft quadrant than that of the
forward quadrant as shown in Figure 69, The maximum noise levels occurred
close to 90-degree emission angle.

Effects of Operational Parameters - The PTA aircraft did not represent a
realistic propfan-powered aircraft because of 1its single propfan propul-
sion system and other special features. However, the acoustic data from
these flight tests and the corresponding _operational and performance
parameters provide an extensive data base. These data may be used in
deriving noise characteristics of advanced propellers and to establish
variational trends as a function of the important aircraft and propulsion
parameters. In deriving the effect of various parameters, it was recog-
nized that the broadband noise, particularly 1in the high frequency range
(i.e., greater than 1000 Hz), was contaminated with background noise, and
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therefore, it is not reasonable to use the subjective noise metrics (i.e.,
dBA, EPNL, etc.). The OASPL, however, represents the blade passing fre-
quency tone level, and therefore, in these analyses the peak OASPLs (in
the time histories) were used. The following parameters are recognized to
be the important parameters: (a) propfan shaft power, (b) rotational tip
speed, (c) nacelle tilt angle, (d) sideslip angle, and (e) angle of
attack. The effect of angle of attack on flyby noise was not derived due
to lack of sufficient data.

Data were selected from different flights by keeping all the variables
except the one for which effects were sought within narrow bands. Then, a
linear regression curve fit was applied to the resulting data points.
This is illustrated in Figure 70, where the variation of peak OASPL with
propfan shaft power is plotted. The other parameters were held within a
narrow range.

Variations of peak OASPL with propfan power are studied for flyover, port
sideline, and starboard sideline positions. At each position, two micro-
phones (inverted ground microphone on the hard surface and 4-ft high
microphone on the grassy surface) are considered. Results are shown in
Figure 71. Figures 71(a) through (e) show the variations in OASPL with
power for different tip Mach numbers. For M in the 0.78 to 0.79 range,
the OASPL increases by about 13 dB by increasing propfan power from 2300
hp to 5900 hp. It may also be noticed that at the lower propfan powers,
the OASPL increases about 10 dB by increasing the helical tip Mach number
from 0.63 to 0.8l. Figures 72(a) through (d) show the peak OASPL
variation with propfan power for various nacelle tilt angles. These data
illustrate that as the nacelle tilt increases (from -3 degrees to
+2 degrees) the OASPL increases at all three measurement positions (i.e.,
flyover, port sideline, and starboard sideline). These changes in nacelle
tilt angle changed the OASPL by 3 to 4 dB. The range of other parameters
during the tests are indicated on these figures.

Effect of Sideslip Angle - The effect of sideslip angle on peak OASPL is
shown in Figures 73(a) through (c). These data indicate that there is
very little change in OASPL as the sideslip angle changes. However, it is
evident from Figure 73 that the available data are very limited. There-
fore, it is not possible to draw broad conclusions about the effects of
sideslip angle on peak OASPL.

7.2.1.3 Assessment of Predictions

Sound pressure levels were predicted by Hamilton Standard using a method
that included steady and unsteady loading, thickness, and broadband noise
components. The loading noise contributions were based on lifting line
aerodynamic calculations. The broadband noise was based on Amiet's
trailing edge noise theory (Reference 4). Atmospheric effects were
computed using the measured temperature and relative humidity. Ground
reflections for the inverted ground microphones were assumed to be 6 dB
and independent of frequency and incident angle. For the 4-ft high micro-
phones on the grassy surface, the ground reflections were computed as a
function of frequency and 1incident angle using impedance as given in
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Reference 5. The sound pressure calculations were made only for propfan-
generated noise (i.e., propfan drive engine, Spey engines, and airframe
noise sources were not included).

One-third octave band spectra, as a function of time, were computed for
28 operating conditions and 6 wmicrophone positions. The 6 microphones
consisted of an inverted "flush" microphone on asphalt and a 4-ft high
microphone on the grassy surface for flyover, port sideline, and starboard
sideline positions. The actual measured operating conditions were used in
the predictions.

Predicted peak OASPLs are compared with the measured OASPLs in Figure 74
where the available data from the 28 flights and 6 microphones were used.-
The peak OASPL is the maximum value in the OASPL time history. It should
be noted that the OASPLs represent the blade passing frequency tone
levels. Using the data points, linear regression curves were drawn. It
is clear from this figure that the sound pressure levels were generally
underpredicted by 6 to 10 dB. Subsequent figures will illustrate the
effects of operational variables and provide insight about where the
predictions are better or worse than the average.

Figures 75(a) through (f) illustrate the difference between predictions
and measurements for 6 microphones separately. The underpredictions are
the same order of magnitude for all the microphones. Therefore, it may be
inferred that the difference between the prediction and measurement was
not due to the propagation effects (atmospheric attenuation and ground
reflections) but due to the underprediction of source noise.

Predicted OASPL time histories (signatures) were compared with measure-
ments for all the predicted test conditions. A typical time history
comparison is shown in Figure 76. Though the shape of the predicted time
history compares well with that of measured data, the magnitudes are
underpredicted. It is not appropriate to compare peak noise times since
the time references for the two curves are different. Spectral compari-
sons were made by examining the 1/3-octave band spectra at the time of
peak OASPL. A typical spectral comparison is shown in Figure 77. 1In this
figure, the predicted spectra at time, t = 0, are compared with the
measured spectra at time, t = 2.5 seconds (Refer to Figure 76.). It may
be observed that the sound pressure levels were underpredicted in all
frequencies. As mentioned earlier, the predictions were made only for the
propfan source, whereas the measured data include propfan drive engine,
Spey engines, and airframe noise. Therefore, the measured broadband noise
is not comparable, but the discrete tones are. It may be observed that
the results are underpredicted by about 5 to 10 dB.

In Figures 78(a) through (d), the predicted peak OASPLs are compared with
the measurements as a function of propfan shaft power for four micro-
phones. These results indicate that the predictions are slightly better
at high power conditions than at low power conditions. In Figures 79(a)
through (d), the predictions are evaluated as functions of propfan tip
Mach number for four microphones. These results indicate that at high tip
Mach numbers, the predictions are closer to measured data.
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Figures 80(a) and (b) illustrate the comparison of predictions with
measurement as functions of nacelle tilt. The predictions appear to be
independent of nacelle tilt for inverted ground microphone, whereas the
measured data increased as the nacelle tilt increased. The 4-ft high
microphone data show the same trend.

7.2.1.4 Lateral Noise Attenuation

Lateral attenuation is generally defined as the attenuation of the sound
propagating to the side of the flight path by the factors that are not
readily accounted for (see Reference 6). For the purpose of this report,
lateral attenuation is defined as the difference between sound pressure
levels under the flight path and the sideline sound pressure levels for
the same propagation distances as illustrated in Figure 8l.

The lateral attenuation was calculated by using the sound pressure levels
from flyover and sideline inverted ground microphones at the time corre-
sponding to peak OASPL in the time history. Only the inverted ground
microphone data were used so that the differences in ground reflections
were minimized. The calculations were made only for the first blade pass-—
ing frequency (BPF) tone. Since the propfan rotational speed changed from
one flight to the other, BPF varied within the range of four 1/3-octave
bands (viz, 160, 200, 250, and 315). The sum of the sound pressures in
these four bands represents the BPF tone since the BPF tone level is
higher than the other three bands by about 10 dB. Therefore, the total
sound pressure levels (sum in the four bands) were used to derive the
lateral attenuation of BPF tone. The measured flyover sound pressure
levels were extrapolated to rhe same propagation distances as that of the
sideline microphone (both corresponding to the emission time). The emis-
sion coordinates and the extrapolations were derived using the measured
radar, forward speed, and ambient condition data.

The lateral attenuation information derived from the measured data is
plotted against elevation angle in Figures 82 and 83 for different nacelle
tilt angles. These data were derived from different flights with dif-
ferent altitudes, propfan powers, and propfan tip speeds. Figures 82(a)
through (c) show data for the port side and Figures 83(a) and (b) for the
starboard side. It is evident from these figures that there is a great
deal of data scatter. To derive the trends in the lateral attenuation
variation, the data were fitted with least square linear curves.

All of the lateral attenuation data are summarized in Figure 84. It may
be seen from these figures that on the port side the lateral attenuation
was positive (i.e, noise attenuated), and on the starboard side the
attenuation was negative (i.e., noise reinforced). In general, the
lateral attenuation was increased as the nacelle tilt increased. From
these data, it may be concluded that the lateral attenuation was primarily
due to the directivity of the propfan source noise.
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7.2.1.5 Conclusions - Far—-Field Noise

The first blade passing frequency discrete tone level was significantly
higher (order of 10 dB) than other sources, and in many cases, the second
and third blade passing frequency tone levels were also distinguishable
from other components. The directivity of propfan-generated sound was
such that the levels in the aft quadrant were higher than in the forward
quadrant. Also, the levels on the starboard side of the aircraft were
higher than on the port side.

The noise levels increased with propfan power, tip rotational speed, and
nacelle tilt angle. The prediction method, developed by Hamilton Standard
and based on lifting line aerodynamics, underpredicted the noise levels by
about 8 dB. Based on the behavior of these data, it is suspected that the
prediction of loading noise needs improvement. The lateral attenuation of
blade passing frequency tone of PTA aircraft reinforced noise on the
starboard side and attenuated on the port side. Also, the lateral noise
attenuation was a strong function of nacelle tilt angle.

7.2.2 Near-Field Noise - Sound Pressures

7.2.2.1 Test Techniques and Conditions

The acoustic data reported here were measured on the fuselage and on the
boom mounted on the wing. The airplane acoustic configuration details are
shown in Figures 85 and 86. The acoustic boom was 19 feet long and
extended forward of the propfan plane; it was diametrically opposite the
fuselage location defined by the closest point of approach to the propfan.
The propfan rotated in an up-inboard direction and at the fuselage closest
point of approach was 0.616 propfan diameters from the fuselage.

The PTA and SR-7L design cruise conditions are summarized as follows:
o Altitude = 10,668m (35,000 ft), Mach Number = 0.80

o Propfan Tip Rotational Speed, V = 244 mps (800 fps),
MROT = (0.822, MTH = 1.147, Advance Ratio, J = 3.06

o PSHP = 1933 kw (2592 shp), PSHP/D’P = 257 kw/m? (32.0 hp/ft?),
Power Coefficient, CP = 1,45

o Baseline Nacelle Tilt, NT = -1 degree

The propfan blade pitch angle was 58.5 degrees, and the propfan generated
a thrust of approximately 8230N (1850 1b). For the rotational tip speed
of 244 mps (800 fps), the frequency of the propfan fundamental tone was
226.4 Hz.

During near-field data acquisition, in addition to the propfan generated

thrust, Spey thrust was required to maintain the aircraft in level flight.
Minimization of Spey noise contamination on the propfan side of the
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alrcraft was obtained by operating the right hand Spey at maximum power
with supplemental power provided by the 1left hand Spey. Because of the
unsymmetric thrust distribution, the aircraft flew with a small steady
sideslip angle.

The array of fuselage surface microphones is shown 1in Figure 87. They
were concentrated in the regions where the highest SPLs were expected.
The closest spacing between microphones was approximately O0.6m (2 ft). In
the propfan plane, microphones were located around the fuselage. The
microphones were of the peizoelectric type, were cylindrical, and were
0.093 inch in diameter. The microphones were vented to provide static
pressure equalization across the diaphragms.

Acoustic and airplane/propfan performance data were acquired simulta-
neously at 570 test points. These test points were specifically defined
to determine near-field acoustic characteristics as a function of five
parameters: altitude, flight Mach number, propfan rotational tip speed,
propfan power, and nacelle tilt (or inflow angle). The test points are
defined in more detail in Section 4,2. All the data were récorded on
board the aircraft, processed in the laboratory, and computer-stored for
subsequent analysis. The principal forms used for analysis were narrow—
band spectral analysis plots, listing of individual tone SPLs, listings of
maximum SPLs and their locations, and parametric plots.

While much of the acoustic data was evaluated up to the fifth harmonic,
the results reported here are generally limited to the first harmonic.
This is because the fundamental had the highest SPL under all conditions
examined, and the higher harmonics tended to decrease in an orderly
manner.

7.2.2.2 Derivation of Propfan—Alone Noise
The acoustic data acquired included contributions from:

o Propfan (tones and broadband)

o Propfan drive system - Allison engine (tones and broadband)
0 Spey engine (tones and broadband)

o Boundary layer (broadband)

o Any other sources

The relative contributions and rankings of these sources were dependent
upon propfan power setting and aircraft operating conditions within the
flight envelope. To establish the acoustic characteristics of the unwanted
noises, a series of flight test measurements were made with the "propfan-
off,"” and the results were compared to identical flight conditions with
the propfan operating. Spectral data for the prop-off configuration are
shown in Figures 88(a) through (¢) for the design cruise condition. The
equivalent "prop-on" spectrum is shown in Figure 89. Analysis of the
propfan-off data showed that:
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o Broadband noise from 200 Hz to 2 kHz scaled with freestream
dynamic pressure. This suggests that the boundary layer is the
principal contributor to broadband noise.

o Spey engine noise was not identifiable at most locations at the
higher altitudes and speeds (all power settings).

o] A low frequency noise source existed which peaked at less than
100 Hz. This noise was not evident with the propfan on and
operating, and the tone level was 'q" dependent. The origin was
most probably an aerocacoustic phenomena associated with the inlet

or exhaust of the windmilling propfan drive engine.

It was concluded that definition of propfan tones was clearly achievable,
but definition of propfan—alone broadband noise was not feasible. The
latter, however, can be no greater than the measured broadband noise flow
which, on a 3.75 Hz bandwidth analysis, was at least 30 dB down from the
fundamental tone level (at noisy locations) and had a boundary layer noise
characteristic. The propfan broadband noise was submerged in this noise
and thus was at an even lower level.

A similar set of acoustic spectra for the wing boom is shown in Figures 90
and 91. Here the tones are again clearly discernible; however, the compo-
sition of the broadband background noise level is more complex.

7.2.2.3 Noise Characteristics at the Design Point

Acoustic pressure time histories (PTH), which are initial steps in a
number of noise prediction methods, are shown in Figure 92 for fuselage
and wing boom locations. The PTHs are for conditions very close to the
design point and are for noisy locations, but are not exactly 180 degrees
apart in the propeller plane. The time interval covered one revolution of
the propfan. The PTHs are periodic on both fuselage and boom but have
distinctly different character. This difference in character may result
from the fact that the measurement points are not diametrically opposite.
The measurements shown include all "source" effects, propagation effects,
and reception effects (such as boundary layer refraction and surface
scattering).

Additional PTHs derived for up to one minute duration show very stable
characteristics.

Narrow-band spectra corresponding to the above PTHs are shown 1in
Figure 93. These spectra, which are rich in harmonics, are typical of
this propfan operating at supersonic tip speed conditions. The highest
SPL occurs at the first order of BPF; generally decreasing SPLs are asso-
ciated with the higher harmonics. Near-field acoustic data acquisition
was limited to 2 kHz. The background noise of the fuselage spectrum came
from the turbulent boundary layer. The background noise of the wing boom
spectrum was dominated by lower level tones corresponding to propfan shaft
orders. Broadband noise of propfan origin is not readily apparent.
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Other measurements for this propfan show that subsonic spectra are
typified by a very strong fundamental tone, with higher order tones
diminishing more rapidly than for supersonic tip speeds.

For the reference test conditions, the distribution of fuselage SPLs along
WL 70 for the first five propfan tones 1is shown in Figure 94. This par-
ticular waterline generally contains the maximum SPLs. It is below the
"closest point of approach," which was along WL 92. The tones have peak
SPLs either in the propfan plane or just aft. The tones decrease in level
with increasing tone number in an orderly manner and have similar direc-
tional characteristics. Values of SPL within 10 dB of the maximum SPL
exist over an axial distance slightly greater than the propfan diameter,
Values within 20 dB of the maximum extend from approximately one diameter
ahead of to one diameter aft of the propfan plane. These acoustic charac-
teristics are for the baseline nacelle tilt of -1 degree.

The fuselage circumferential distribution of fundamental tone SPLs in the
plane of the propfan is shown in Figure 95. The maximum SPL was located
at a position lower than the "closest point of approach.”" 1In this plane,
SPL values within 10 dB of the maximum existed over most of the visible
side of the fuselage, but fall off rapidly on the blind side. Comparable
trends at lower SPL values were apparent for higher harmonics.

For the same reference test conditions, the fundamental tone SPLs are
mapped over the side of the fuselage (looking from the propfan) in
Figure 96. These SPLs include the previous waterline and circumferential
distribut ions. The maximum SPL was 147.1 dB located 1/4 Dp aft of the
propfan plane and below the closest point of approach. This SPL is an
example of what will later be referred to as an "area maximum SPL."

The distribution of wing boom SPLs for the first five propfan tones is
shown in Figure 97. The data presented are "as measured" and are essen-
tially free-field. The tones all have maximum SPLs in the plane of the
propfan and decrease in level with increasing blade order in an orderly
manner; they all have very similar directional characteristics.

A comparison between "opposite location" wing boom and fuselage SPLs for
the fundamental tone is shown in Figure 98, In the ground tests, it was
found that wave reflection effects increased fuselage SPL measurements by
about 6 dB. Therefore, the boom data of Figure 98 include an increment of
6 dB to permit direct comparison with the fuselage SPLs. This comparison
then shows similar levels, but the boom data indicate a slightly higher
directionality. Comparisons were similar for the higher harmonics. This
comparison is for a nacelle tilt of -1 degree. 1In later sections, it will
be shown that different nacelle tilts radically affect these relationships
and that no generalized SPL relationship between fuselage and boom exists.

7.2.2.4 Effects of Propulsion Parameters on Noise
The variation of propfan fundamental tone SPL with rotational tip speed

and power on the fuselage at the design cruise condition is shown in
Figure 99(a) for a nacelle tilt of -1 degree. The propfan helical tip
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Mach number ranged from 1.02 to 1l.16. The SPL shown is the maximum on the
side of the fuselage. It increased with propfan power and tip speed, but
with different sensitivities.

The data shown in Figure 99(a) {is for "total" propeller noise, e.g., the
sum of all loading and thickness noise components. Examination of the
noise trends reveals important evidence concerning its contributing noise
sources makeup. The acoustic sensitivity to power was greater at the
lower tip speeds than at the higher tip speed. For the highest tip speed,
a reduction of power from maximum to minimum resulted in a 4 dB SPL reduc-
tion. That particular curve shows a flattening of noise with reducing
power--suggesting that at the low power, the noise was dominated by a
thickness noise floor. This level of thickness noise was then reinforced
by the increasing level of loading noise at the higher powers to produce
the characteristic shown. For the lowest tip speed, a similar reduction
of power resulted in an 8 dB SPL reduction. The slope of this curve with
power suggests that it is dominated by loading noise.

At the higher tip speeds and higher powers, a reduction of noise with
increasing tip speed is shown. Simfilar trends were observed for the
higher harmonics.

The same data is presented in an alternate form in Figure 99(b). Here the
abscissa scale is propfan tip rotational speed. If expressed in terms of
propfan tip helical Mach number, this scale would range from 1.02 to l.16.
This figure shows that for any given tip speed, increasing power increased
SPL at the first order BPF. This 1increase was reduced at higher tip
speeds. However, the conclusion is that loading noise made a significant
contribution to propfan noise at all the operating conditions shown.

In Figure 100 acoustic data are plotted against estimated propfan thrust.
The general trend was that increasing thrust increased SPL for all tip
speeds. However, at the higher thrusts, small reductions of SPL are shown
for either increasing or decreasing tip rotation velocity away from
243 mps (797 fps).

An SR-7 propfan propulsion map relating power coefficient, Cp, advance
ratio, J, and blade angle, B, for M = 0.8 1is shown in Figure 101l.
Superimposed on this chart are lines of constant SPL for the propfan
fundamental tone. This format shows directly the influence of the propfan
nondimensional operating parameters on SPL. The SPL contours increased in
level in an orderly manner with decreasing J and increasing C.. There was
no optimum design combination for minimum noise such as is apparent for
propulsion efficiency curves plotted on the same map. The constant dB
lines are almost normal to the [, lines. Measured acoustic data from a
2/9-scale model SR-7 propfan (Reference 7) show similar sensitivities to
C, and J.
P

The variation of the propfan fundamental tone SPL at the wing boom for the
same basic propulsion parameters is shown in Figure 102. At the higher
tip speeds, the SPL was even less sensitive to power than was observed on
the fuselage (Figure 99(a)).
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7.2.2.5 Noise Variation Over the Flight Envelope

The variation of the measured fuselage SPL at first-order BPF over the
entire aircraft flight envelope is shown in Figure 103(a). 1In this data
set the propfan tip speed was constant at 244 mps (800 fps), the nacelle
tilt was maintained at -1 degree, and the propfan was always operating at
maximum power (4474 kw (6000 shp) at low altitude and speeds, 1491 kw
(2000 shp) at the highest altitude and speeds). Since testing was
conducted at nearly constant aircraft weight, there was a variation of
aircraft angle of attack (and consequently propeller inflow angle) over
the flight envelope. This effect is included in the data presented. The
data trends are very orderly. Lower SPLs are evident at points typical of
low-altitude climb (higher powers and subsonic tip speeds) with contin-
ually increasing levels to cruise conditions (lower powers and supersonic
tip speeds). The highest SPLs occur in the region of highest "g" and
highest propfan tip helical Mach number,

The corresponding "acoustic flight envelope" for the second harmonic, at
the same conditions, is shown in Figure 103(b). It shows a greater range
of SPL levels than for the fundamental. Also, the second harmonic is much
stronger, relative to the fundamental, at the high-speed cruise conditions
than at the low-speed, high angle of attack conditions, as shown in
Figure 103(b).

This "acoustic flight envelope" has different SPL distributions and sensi-
tivities for other nacelle tilts and propfan tip speeds.

The effect of increasing propfan tip helical Mach number, Myy , (at
constant rotational speed) on near-field noise is shown in Figure 104,
The range of tip helical Mach number, Mty » is from 0.8 to just under l.2.
All the curves (which are for different altitudes and powers) show a
smooth increase in SPL with increasing Mty .« No abrupt increase in SPL is
apparent as the tip Mach number goes from subsonic to supersonic. This
characteristic is for BPF 1. For higher harmonics, the trends would be
steeper, but no discontinuity at Mty = 1 is expected.

7.2.2.6 Noise Scaling with Altitude

Many near-field acoustic prediction procedures normalize the effect of
altitude on acoustic pressure through a "pc?" factor, where P is the
ambient atmospheric density and ¢ is the local speed of sound. A Pc?
ratio also corresponds to a static pressure ratio; use of such a factor is
an element in the scaling procedure for deriving flight SPLs from measured
wind tunnel SPLs. Test cases were planned to produce data that would
enable an evaluation of the parameter Pc? for altitude scaling of
acoustic pressures. The tables of Figure 105 show five pairs of test
points--two for supersonic tip speeds and three for subsonic. In each of
these five cases, data were obtained for two altitudes at common C. and J
values. The tables list for each case the difference in SPL meastired at
the two altitudes.
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To define theoretical differences in SPL for different altitudes, the
scaling theory uses the relationship:

poe,?
AdB=2010g—p—2-c—2-;
11

This relationship was used to calculate the differences in SPL for the
five pairs of test conditions shown in Figure 105, Figure 106 shows the
measured SPL differences plotted against the theoretical values. These
data indicate that the scaling parameter is moderately accurate-—giving
results within about 2 dB of measured values. The fact that better
agreement of the theory was obtained for Cases 1 and 2 than for Cases 3
through 5 is probably more a function of the magnitude of altitude
differences than of a subsonic-versus-supersonic relationship.

7.2.2.7 Effects of Inflow Angle on Noise

Aerodynamic inflow direction relative to the propfan plane was expected to
be an important parameter in the generation of propfan noise. This inflow
angle is dependent upon airplane angle of attack, upwash angle at the
propfan, and nacelle tilt. These angles are defined schematically in
Figure 107. An example of the estimated relationship between nacelle tilt
and propfan inflow angle at the design cruise point is also shown.

The engineering rationale for the way propfan inflow angle and propfan
direction of rotation are expected to affect the near—-field noise
characteristics is shown in Figure 108. For the "up-inboard" rotation,
increasing nacelle tilt (which increases propfan inflow angle) is expected
to decrease blade l1ift noise on the fuselage and increase lift noise on
the wing boom.

The measured effects of nacelle tilt variation on fuselage and wing boom
SPLs at BPF 1 are shown for the cruise condition as functions of tip speed
in Figure 109. The results, for the fuselage, show that increasing
nacelle tilt provided significant SPL reductions for all propfan tip
speeds. The reductions were larger at the lower tip speeds. On average,
the acoustic sensitivity was 1 dB/degree of nacelle tilt. On the other
side of the propfan, increasing nacelle tilt provided significant SPL
increases at the wing boom with similar sensitivities, but opposite sign.
Similar effects occurred over the entire fuselage surface and also in the
higher harmonics.

These trends suggest that for the high-speed cruise condition, cyclic
aerodynamic loading on the propfan blades played an important role in
defining the magnitude and directionality of propfan noise.

This sensitivity to nacelle tilt is shown 1in an alternate format in
Figure 110. These data again show that the highest fuselage SPLs are
generated with the nacelle tilt at -3 degrees; the 1lowest SPLs were
obtained with a nacelle tilt of +2 degrees. The difference in absolute
SPL must be related to the relative magnitude of the cyclic loading
component. The different SPL sensitivities to propfan rotational tip
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speed (at almost constant power) imply that the role of cyeclic loading
noise was more important at the lower tip speeds.

The variation of maximum SPL measured on the fuselage is shown for 17
points within the flight envelope for the nacelle tilt of -3 degrees in
Figure 11l1. An increase in SPL relative to the equivalent nacelle tilt
data of -1 degree is evident at every test point. The highest fuselage
SPL at first-order BPF acquired during the PTA flight test program
occurred under these test conditions. It is the 151.7 dB point at an
altitude of 8,229m (27,000 ft) and a Mach number of 0.83.

The variation of SPLM, measured on the fuselage, within the flight
envelope for the nacelle tilt of +2 degrees 1is shown in Figure 112, A
decrease in SPL relative to the equivalent nacelle tilt data of -1 degree
is evident at every test point.

The effect of the 5-degree increase in nacelle tilt on fuselage SPLs at
first-order BPF was determined for 17 points within the flight envelope
and is shown in Figure 113 for the defined conditions. A noise reduction
is evident at every test point. The larger reductions occurred at the
higher q's and the higher Mach numbers, and the smaller reductions
occurred at the lower q's and the lower Mach numbers.

The effect of the S5-degree increase in nacelle tilt on wing boom SPLs at
BPF | is shown in Figure 1l4. A noise increase is evident at every test
point. The larger increases occurred at the higher q's and the higher
propfan tip helical Mach numbers, and the smaller increases occurred at
the lower q's and the lower propfan helical tip Mach numbers.

The effects of nacelle tilt on fuselage and wing boom SPLs at BPF 1 are
shown for the flight test condition of low altitude (H = 5000 ft) and low
speed (M = 0.28) in Figure 115. The trends are similar to the cruise case
shown earlier; however, the effects are much less. The reduced sensi-
tivity is probably related to the cyclic aerodynamic loading change
produced by a 5-degree nacelle tilt change being a smaller percentage of
the blade steady aerodynamic loading (associated with maximum power) at
this condition than for the H = 10,668m (35,000 ft) and M = 0.8 condition.

An inflow angularity is also created by airplane sideslip, so a series of
tests were planned to quantify the sensitivity of fuselage SPL to side-
slip. 1In these tests, the largest values of sideslip were achieved by
flying the aircraft with maximum rudder deflections. The results, shown
in Figure 116, show the sideslip influence on fuselage and wing boom SPLs
to be very similar both in trend and magnitude to that of nacelle tilt,
e.g., 1 dB/degree. This coincidence of results happens even though the
two different inflows would be expected to produce cyclic loading changes
in different parts of the propfan disc and thus have different directional
characteristics.

Because of the asymmetry of the PTA aircraft, most of the data points in

the flight test program were taken with some degree of sideslip. At
higher powers, this was generally in the range %0.5 degree. Therefore,
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although most of the test points have some acoustic contamination due to
sideslip, these results indicate that the effect was probably less than
io.s dB.

7.2.2.8 Comparisons of Predicted and Measured Noise

After the flight test acoustic data were processed, a comprehensive set of
near-field acoustic predictions was made by Hamilton Standard. Forty-six
test points were selected as prediction cases to cover a very wide range
of propfan test parameters. Aircraft and flight parameters for these
points were used as starting conditions for the predictions. Twelve of
the test cases required predictions at many microphone locations. Thirty-
six predictions were made at a single microphone location corresponding to
the location of SPLM. The predictions were for the first five harmonics
and covered both amplitude and relative phase. They were on a propeller
"total” noise basis only, 1i.e., they incorporated: loading noise, cyclic
loading noise, thickness noise, and transonic noise. The predictions also
included all source effects, propagation effects, and reception effects
(which cover boundary layer refraction and surface scattering effects).
A summary of the Hamilton Standard prediction methodology 1s shown in
Figure 117. The comparisons between predictions and measurements covered
acoustic pressure amplitude only.

The correlation between predicted and measured fuselage surface SPLs for
first-order BPF is shown in Figure 118. These cases covered a wide
variety of test conditions, e.g., altitude, Mach number, rotational tip
speed, power, and nacelle tilt. Generally, noise was overpredicted at the
higher SPLs associated with cruise conditions. At the design point, the
overprediction was 3 dB. Underpredictions occurred at the lower SPLs
associated with climb conditions.

On the fuselage, the predicted SPLM always occurred on WL 94, which was
the closest point of approach to the propfan. As shown in Figure 119, 36
of the predicted maxima occurred in the plane of the propfan while 10
occurred slightly aft of the propfan plane. In comparison, the majority
of measured SPLM locations occurred aft of the plane of the propfan and at
a waterline location below the closest point of approach.

Axial distributions of predicted and measured SPLs, for fuselage water-
lines containing the maximum levels of BPF 1 and BPF 2, are shown in
Figure 120. For both harmonics, measured maxima consistently occurred 24

inches lower than the predicted. All conditions shown maximized at
+0.25 D_ aft of the propeller plane. Both harmonic maxima were over-
predicted by 3 dB. The measured axial distributions showed a broader,

flatter characteristic and thus extended over a greater length of fuselage
than did the predicted distributions.

Predicted SPLs for BPF 1 for all measurement locations over the fuselage
side at the design cruise condition are shown in Figure 121. SPL contours
have been developed. These "predicted" contours include a larger fuselage
surface area than did the measured data contours shown earlier. The pre-
dicted and measured contour shapes also have different characteristics.
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Similar comparison data developed for the second, third, fourth, and fifth
harmonics generally showed similar trends.

A comparison of spectra for the first five tones corresponding to the
fuselage predicted and measured maximum SPL at design cruise is shown in
Figure 122, The relative levels for these supersonic spectra are in good
agreement; the 3 dB overprediction generally applies to all the harmonics.
This comparison is fairly representative of high-speed cruise and other
noisy conditions.

Predicted and measured trends of SPL, BPF 1, propfan tip speed, and power
at the design cruise condition are compared in Figure 123. For all con-
ditions, there is an overprediction. The predicted SPL at the higher tip
speeds are essentially independent of power and do not demonstrate the
measured sensitivity, These trends suggest that the predictions were
dominated by a high level of the thickness noise component.

The same data are presented in a different format in Figure 124. The
predicted SPLs do not show any evidence of a peak in the noise character-—
istic with propfan tip rotational speed.

The variation of predicted SPL, BPF 1, over the flight envelope is shown
in Figure 125 for the conditions of Vggr = 244 mps (800 fps) and maximum
available power. The highest predicted level was 154.2 dB and occurred at
the highest q and tip helical Mach number.

The differences between predicted and measured fuselage maximum SPLs over
the flight envelope for the reference conditions are shown in Figure 126.
The AdB value at each point is equal to the predicted minus the measured
value. It can be seen that overpredictions occurred at conditions typical
of cruise, while underpredictions occurred at conditions typical of climb.
Similar comparisons were made for the second harmonic, with generally
similar conclusions.

Predicted and measured fuselage SPL, BPF 1, trends with nacelle tilt are
shown in Figure 127. These comparisons are for design cruise conditions,
a range of propfan rotational tip speeds, and maximum available power,
The predictions were always higher than measured values. They show little
sensitivity to nacelle tilt, whereas the measured data show a dramatic
reduction of fuselage SPL with increase of nacelle tilt. These results
suggest again that the predicted total noise levels were overly weighted
by thickness noise.

For the wing boom, predictions showed a similar insensitivity of SPL to
nacelle tilt—again in contrast to measured data.

The correlation between the twelve predicted and measured SPLs, BPF 1, at
the wing boom is shown in Figure 128. Generally, overpredictions occurred
at the higher SPLs associated with cruise conditions. The underpredic-~
tions occurred at the lower SPLs associated with climb conditionms.
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7.2.2.9 Conclusions - Near-Field Sound Pressure Levels

The following summarizes the principal findings of the near-field investi-
gations.

o] A comprehensive set of high—quality acoustic data was acquired on
the fuselage and the wing boom together with detail airplane
performance and propfan operating parameters for a wide range of
test parameters.

0 The acoustic spectra were dominated by the first order BPF tone
with higher order tones at lower SPLs.

o] There was no evidence of propfan generated broadband noise.

o SPLs increased smoothly with transition from subsonic to super-
sonic propfan tip speeds.

o At the airplane/propfan design cruise point:
- The SPLM, for BPF 1, was 147 dB.

- A large area of fuselage was exposed to SPLs greater than
130 dB for the first—order BPF of 226 Hz.

-~ Small changes in SPL were obtained by changes in propfan
tip speed at higher thrusts.

-~ SPLs were very sensitive to propfan inflow angle and to
propfan direction of rotation; increases in nacelle tilt
caused dramatic reductions in fuselage SPL, especially at
lower tip speeds.

- SPLs were lower than predicted; predictions showed an
insensitivity to power input and inflow angularity, in
contrast to measured data.

o For low-altitude climb, SPLs were higher than predicted.
7.2.3 Near-Field Noise — Fluctuating Pressures

The most significant acoustic impact of the propfan on the aircraft other
than the sound pressure levels produced on the fuselage was the production
of fluctuating pressure in the region where the propfan slipstream
impinged on the wing. The slipstream contains blade trailing edge wakes
and blade tip vortices——both of which produce oscillating surface pres-
sures.

The character of the oscillating pressure on the wing is more complex than
those on the side of the fuselage. The fuselage oscillating pressures
result from airborne sound pressures, while the wake-impacted oscillating
pressures are more nearly hydrodynamic in nature.
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7.2.3.1 Test Techniques and Conditions

In the PTA Program, 44 peizoelectric transducers were placed on the upper
and lower surfaces of the wing in the slipstream wake region to measure
these fluctuating pressure levels (FPLs). Their locations will become
obvious in the plots of the data. They were, however, concentrated in the
regions of the wing behind the blade tips. Measurements of FPL were made
at the same time SPL was recorded.

In the following sections, these FPL data will be discussed and compared
with predicted values.

7.2.3.2 Derivation of Propfan-Alone Fluctuating Pressures

As in the case of SPL data, the FPL data consisted of "total" noise, e.g,
the measured data included contributions from all sources (as modified by
the presence of the wing surface and its boundary layer) as follows:

o Propfan (tones and broadband)

o Propfan drive system - Allison engine (tones and broadband)
o Spey engine (tones and broadband)

o Boundary layer (broadband)

o Any other sources

The relative contributions and rankings of these sources were dependent
upon propfan power setting and aircraft operating conditions within the
flight envelope. To establish the fluctuating pressure characteristics of
the unwanted noises on the wing, data were used from the "propfan-off"
tests.

Measured prop-off and prop-on spectral data at a microphone location on
the wing lower surface are shown in Figures 129 and 130 for the design
cruise condition. Analysis of these and other data showed that with the
propfan off:

o A low-frequency tone was present that is believed to be an
"organ-piping" associated with either the inlet or exhaust system
of the windmilling propfan engine. This can also be seen in the
fuselage SPL data.

o The broadband spectra were insensitive to Spey engine power
setting, just as in the case of near-field noise.

o The broadband levels were lower than on the fuselage but had much
greater spatial variation, possibly caused by other wing flow
phenomena, e.g., shocks, shock/turbulence interaction, and flow
separation,

0 Propfan-off data interpretation on the wing was more difficult
than on the fuselage.
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A similar set of data is shown for the wing upper surface in Figures 131
and 132. Generally, similar conclusions apply; however, the prop-off
spectra do show some sensitivity to Spey engine power setting at frequen-
cies below 500 Hz.

Both lower and upper surface propfan—on spectra show that:

o] Strong tones exist at the fundamental and harmonic tones of the
blade passage frequency which exceed the floor level by at least
20 dB.

o The broadband levels are higher with propfan-on than with
propfan-off; this appears to be due to a multitude of pure tones
associated with propfan engine drive frequency.

It was concluded that:
o Definition of propfan tones was clearly achievable.

o Definition of propfan-alone broadband noise was not feasible.
Its level, however, can be no greater than the measured broadband
noise floor. On a 3.75 Hz bandwidth analysis, the measured
broadband noise is at least 30 dB down from the fundamental tone
level (at noisy locations). The propfan broadband noise was sub-
merged in this noise and thus was at an even lower level.

7.2.3.3 FPL Characteristics at the Design Point

Examination of the measured wing FPL data was initially conducted on a
lower and upper wing surface basis. However, it became apparent that this
was an over simplification of the phenomena involved, and that because of
zonal differences, wing FPL analysis became more meaningful 1if conducted
on a "quadrant" basis. This no doubt derived to a large degree from the
effect of wing sweep, from the fact that the slipstream centerline was
above the wing, and from rotational directivity effects.

Fluctuating pressure time histories (PTH) on the wing surface in each of
the four impingement zones are shown in Figure 133. These data are for
design cruise conditions, with the reference nacelle tilt of -1 degree,
and therefore with supersonic helical tip Mach numbers. The time span was
0.04 seconds, which corresponded to a single rotation of the propfan
blade. The PTHs are for the microphones which have the highest FPLs. They
all exhibit periodicity, but each quadrant has a different characteristic.
The upper and lower inboard PTHs indicate an interesting inversion in
amplitude characteristics.

The narrow-band spectra for each quadrant, corresponding to the previously
shown PTHs, are displayed in Figure 134. The analysis effective bandwidth
was 3.75 Hz. These supersonic spectra, at design cruise, are dominated
by the FPL at BPF 1 and are all rich in harmonics. The noise floors are
30 to 40 dB below the BPF 1 level and show a multitude of tones at the
propfan shaft order frequency. There appears to be no discernible FPL
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broadband noise. With respect to the tonal content, the FPL supersonic
spectra are generally similar to SPL supersonic spectra. (Examination
of FPL spectra at subsonic conditions, however, shows that much of the
spectral tonal richness 1s retained, whereas the SPL subsonic spectra
showed rapid tonal decay.)

The distribution of FPLs for BPF 1 over the wing lower surface is shown
for design cruise conditions in Figure 135, The dots indicate the loca-
tions of the 22 lower surface microphones. The maximum value of FPL was
148.2 dB at the wing leading edge, immediately behind the propfan tip.
FPLs in excess of 140 dB were measured in other zones.

Wing surface distributions for the FPL higher harmonics showed generally
similar trends, but at lower levels.

In much of the ensuing text and figures, the maximum value of FPL in any
quadrant will be abbreviated as FPLM.

The FPL linear distribution near the leading edge of the wing lower
surface is shown in Figure 136 for five harmonics. Both inboard and
outboard profiles show maximum FPLs directly behind the propfan tip, and
a very peaky spatial distribution, dropping off rapidly going out of the
slipstream. This localized excitation exposed a 24-inch span of inboard
wing to FPLs in excess of 140 dB. The FPL harmonics show similar shapes,
while decreasing in level 1in an orderly manner. Overall, the inboard
excitations were stronger than the outhoard excitations.

The distribution of FPLs for BPF 1 over the wing upper surface at the
design cruise conditions is shown in Figure 137, The dots indicate the
location of the 22 upper surface microphones. The highest FPL at the
leading edge was 140.5 dB; however, a higher level was measured in the
mid-chord location. Generally, the 1inboard FPLs were higher than the
outboard FPLs.

Distributions for the FPL higher harmonics showed similar trends but at
lower levels.

The FPL linear distribution close to the leading edge of the wing upper
surface for five harmonies 1s shown 1in Figure 138. Both inboard and
outboard profiles show maximum FPLs very close behind the propfan tip.
The inboard distributions are broader than the outboard distributions.
This localized excitation exposed a 24-inch span of inboard wing to FPLs
of the order of 140 dB. The FPL harmonics showed similar shapes, while
decreasing in level in an orderly manner. Overall, the inboard excita-
tions appeared to be stronger than the outboard excitations.

The chordwise distribution of FPL for BPF 1 for the wing upper and lower
inboard section at the design cruise condition 1is shown in Figure 139.
Both surfaces show FPLs at BPF 1 in excess of 140 dB for considerable
chordwise distances. ]
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7.2.3.4 Effects of Propulsion Parameters on FPL

The dependencies of wing inboard FPIM upon propfan tip speed and propeller
shaft horsepower at cruise design conditionms for BPF 1 are shown in
Figure 140 for a nacelle tilt angle of -1 degree. The lower surface FPL
was always 5 to 10 dB higher than the upper surface FPL. Both exhibited
increasing levels with power, but reached plateau at the higher powers.
Both displayed a small sensitivity to rotational tip speed. Generally,
the FPLs showed a surprisingly small variation (7 to 8 dB) over the total
power and tip speed range. There is some evidence that, at a given power,
the highest FPLs were produced by the lowest propfan rotational tip
speeds.

The wing outboard FPLM dependencies upon propfan tip speed and propeller
shaft horsepower at cruise design conditions for BPF are shown in
Figure 141. The lower surface FPL was higher than the upper surface FPL
at the higher powers. The lower outboard surface consistently showed the
characteristics of increasing FPL with reducing tip speed. This can be
attributed to the lower-propfan—tip-speed operation requiring an increase
in blade C. (through blade angle of attack increase) to maintain per-
formance. This increased the strength of the tip vortex and hence the
vortex/wing interaction FPLs. The measured FPLs shown for the wing upper
outboard quadrant exhibited a more irregular pattern than for the other
three quadrants. For the outboard quadrants, the propfan tip vortex had a
greater distance to travel (because of wing sweep effects) before wing
impingement. Possibly at this upper wing location, the transducers were
not positioned correctly to acquire the maximum levels of FPL.

7.2.3.5 FPL Variation Over the Flight Envelope

The variation of FPLM for BPF 1 for the wing lower inboard quadrant over
the flight envelope is shown in Figure 142. For this 19-point data set,
propfan tip speed was held constant, and power was held at the maximum
attainable. Some of the levels shown on this figure are low and out of
pattern, but for most of the points, the FPL is maintained at a level of
150 +3 dB. The trend was towards slightly higher FPLs at lower altitudes
and speeds; the highest FPL was 153.5 dB and occurred at H = 1524m
(5000 ft) and M = 0.28.

The variation of FPLM for BPF 1 for the other three quadrants over the
flight envelope is shown in Figures 143 through 145. These data also
indicate higher FPLs at the lower altitudes and Mach numbers.

The relationship between wing FPLs and fuselage SPLs for BPF 1 is shown in
Figure 146 on a dB basis over the flight envelope. The value of FPLM is
taken to be that at the lower inboard surface at l0O-percent chord. A
positive sign indicates that the FPLM is greater than the SPLM. Generally,
FPLM exceeded SPLM. The exceedance increased with reducing altitude and
Mach number and reached a maximum of 17.6 dB at H = 1524m (5000 ft) and
M = 0.28.
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For lower propfan rotational tip speeds, the comparative differences
between FPLM and SPLM were even larger.

These differences may have important implications for the relative levels
of structureborne and airborne sound within the cabin at different operat-
ing conditions. If structureborne noise in the cabin is a problem, it
should be more evident at low-speed, low-altitude conditions than at high-
speed cruise.

7.2.3.6 Effects of Inflow Angle on FPL

The effect of nacelle tilt (and inflow angle) on FPLs at BPF | in each of
the four wing quadrants is shown in Figure 147 for a rotational tip speed
of 243 mps (797 fps) and the design cruise condition. These data are from
the leading edge microphones. For the inboard quadrants, both upper and
lower surfaces showed a reduction of FPL with an increase of nacelle tile;,
the sensitivity was approximately 1 dB/degree. This effect of nacelle
tilt on wing inboard FPLs is very similar to the SPL trends measured on
the fuselage. For the wing outboard surfaces, the overall trend showed an
increase in FPL with nacelle tilt (although there were some inconsistent
points); this effect is similar to the SPL trends measured on the wing
boom.

The effect of nacelle tilt on wing lower inboard surface FPLMs for the
conditions of 243 mps (797 fps) propfan rotational tip speed and maximum
continuous power is shown over the flight envelope 1in Figure 148. The
total nacelle tilt change is .5 degrees, from =3 degrees to +2 degrees.
The resulting change, in FPLM AdB, was obtained by subtracting the FPLM
at NT = +2 degrees from the FPLM at NT = -3 degrees. The data show, for
the majority of points, that there was a reduction of FPL on the wing
lower inboard surface with an increase of nacelle tilt. The corresponding
analysis for the wupper inboard surface showed similar results. These
results have the same trend as those for the fuselage SPLs.

The effect of nacelle tilt on wing lower outboard surface FPLs for the
same conditions is shown over the flight envelope in Figure 149. Again

the total nacelle tilt change was 5 degrees. The data show that, in
general, there was an increase of FPL on the wing outboard lower surface
with an Iincrease of nacelle tilt. The corresponding analysis for the
upper outboard surface showed similar results. These results have the

same trends as those for the wing boom SPLs.

It appears that wing surface FPLs were strongly influenced by propfan
nacelle tilt-——or inflow conditions. The combination of increasing nacelle
tilt (which 1increases propfan inflow angle) and propfan direction of
rotation produced similar effects for FPLs and SPLs as summarized in
Figure 150, These sensitivities to propfan inflow angle no doubt are
related to the cyclic variation of propfan blade loading and tip vortex
strength as it rotated in a non-axial flow field.
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7.2.3.7 Comparison of Predicted and Measured FPLs

After the flight test acoustic data had been processed, a comprehensive
set of wing FPL predictions was made at the same 46 test points that were
used for the SPL predictions. Twelve of the test cases required predic-
tions at many microphone locations. _ Thirty-six predictions were made at
single microphone locations corresponding to the 1location of FPLM. The
predictions were for the first five harmonics and covered both amplitude
and relative phase. A summary of the Hamilton Standard prediction method-
ology is shown in Figure 151. The comparisons between predictions and
measurements covered pressure amplitude only.

The correlation between predicted and measured FPLs for BPF 1 on the wing
lower inboard surface for all 46 cases 1is shown in Figure 152. These
cases covered a wide variety of test conditions, e.g., altitude, Mach
number, rotational tip speed, power, and nacelle tilt. The prediction
methodology underestimated the measured levels by, on average, 30 dB.

The distribution of predicted FPLs over the wing lower surface at design
cruise conditions is shown in Figure 153. The highest levels were at the
wing inboard leading edge. They show a reduction with increasing chord-
wise location. Comparison with measured levels are shown in brackets in a
dB form. Negative signs indicate an underprediction.

A comparison of predicted and measured FPL distributions at the wing lower
surface leading edge transducers immediately aft of the propfan tips is
shown in Figure 154. The comparison is for design cruise conditions and
i{s for the first three harmonics of FPL. All harmonic levels were under-—
predicted. 1t would appear that the propfan tip vortices produced an
intense localized loading on the wing which was not being predicted.

The predicted and measured dependence of FPLM on propfan power and tip
speed at the design cruise conditions for wing lower inboard surface are
shown in Figure 155. Generally, both sets of data show increasing FPL
with power, although the measured trends are flatter. At constant power,
the predicted FPLs increased with reducing propfan tip rotational speed.
There is limited measured evidence to support that trend in this partic-
ular quadrant, but it was consistently identified in the lower outboard
quadrant.

7.2.3.8 Conclusions - Fluctuating Pressure Levels

The following summarizes the principal findings of the wing FPL investiga-—
tions.

o The FPL spectra were dominated by the propfan first order BPF
tone with higher order tones at decreasing levels.

o Propfan-generated broadband FPL was not readily apparent.

o High FPLs occurred on the wing surfaces immediately behind the
propfan tips.
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o) The wing surface area exposed to an FPL greater than 140 dB (for
BPF 1) covered a spanwise width of about 0.6m (2 ft) over a con-
siderable chordwise distance--in each quadrant.

o FPLs at the noisy inboard quadrants showed little sensitivity to
power and tip speed.

o FPLs were high over most of flight envelope; the highest FPLMs
were measured at the lowest altitudes and Mach numbers (at max-
imum power).

0 The wing FPLs exhibited sensitivity to nacelle tilt similar to
adjacent fuselage or wing boom SPL sensitivities.

o The measured FPLs were much higher than predicted.

o Wing FPLMs were slightly higher than fuselage SPLMs at design
cruise but were much higher at low-speed, low-altitude condi-
tions.

0 A unique data base has been established which:

— Documents large-scale propfan slipstream/wing impingement
FPLs and system performance parameters

- Provides new insight into previously 1little-explored
phenomena

7.2.4 Cabin Noise

7.2.4.1 Test Techniques and Conditions

During the cabin noise tests, the general arrangement of the testbed
airplane was unchanged from that of the other flight research tests. The
configuration is described and illustrated in Section 4. The configura-
tional aspects of particular relevance to cabin noise are: the Spey
engine operation; the cabin heating, air conditioning, and pressurization
system; and the interior trim and furnishings installations.

Spey Engine Operation - Cabin noise data were obtained with the propfan

operating at a variety of power, tip speed, flight speed, and altitude
conditions. During these tests, the airplane was always in level flight
attitude. The thrust from the propfan was often not sufficient to
maintain this level flight condition. When this was the case, the Spey
engines were used to supply the additional thrust required. When Spey
engine thrust was needed, it was obtained from the right-hand engine when-
ever possible, keeping the left-hand engine at flight idle. The left~hand
Spey engine was only powered-up when the combined thrust of the right-hand
Spey at maximum continuous power and the propfan at test power were not
sufficient for level flight.
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Cabin Heating/Cooling - The cabin was air conditioned for crew comfort
with the standard GII air cycle system, supplied by the Spey engine
compressor bleed air. All standard GII air distribution ducting in the
passenger cabin was removed, however, and heating/cooling air was intro-
duced in the aft end and in the flight station and discharged through the
outflow valves in the flight station.

This installation, while not ideal, maintained cabin air temperatures in
a range narrow enough to minimize concern for the temperature—induced
changes in air density and speed of sound (pPc).

Cabin Pregsurization - The cabin was pressurized via the standard GII
pressure regulation system, which provides for sea level pressure at
altitudes below about 6,096m (20,000 ft). At higher altitudes, cabin
pressure decreased in accord with a constant differential pressure of
about 55,160 N/m? (8 psi). Thus, at the highest test altitude of about
12,192m (40,000 ft), where outside static pressure is about 18,823 N/m?
(2.73 psi), the cabin pressure was about 73,983 N/m? (10.73 psi), which is
equivalent to a cabin pressure altitude of about 2591m (8500 ft).

Cabin pressure was regulated by modulating the outflow valve which was
located behind the avionics equipment rack near the flight station bulk-
head.

The effects of variable cabin pressure were measured in the test program
and are discussed in Section 7.2.4.5.

Interior Trim and Furnishings - The testbed cabin was totally devoid of
trim, thermal iInsulation, soundproofing, and carpeting. Seating was
available in the forward and aft ends only, and there only for the test
engineers and observers. The general arrangement of the interior floor
plan is shown in Figure 156. The cabin area within about 5 feet forward
to about 10 feet aft of the propfan plane was kept clear of obstructions
and personnel during acoustic testing. The fuselage shell construction
concept and the bare—cabin character are visible in Figure 157. 1In some
skin bays, a light-toned surface is visible. This is a .64 cm (1/4 in.)
foam damping sheet, with either a vinyl or a foil backing, that was bonded
to the skin. This was standard hardware in the production GII and was not
readily removable. It was thought to be of minor consequence in low-order
propfan noise and was therefore left in place. Figure 157 also shows the
placement and comparatively large size of the passenger windows. 1In all
tests, the window panes were installed and unobstructed.

7.2.4.2 Instrumentation

The cabin noise analyses were based primarily on the noise data obtained
from the 33 microphones within the cabin. Important use was also made of
the 45 fuselage exterior surface microphones, the 44 wing microphones in
the propfan slipstream, the 51 accelerometers on the fuselage shell and
floor structure, and the 25 accelerometers on the wing lower surface. For
more specifics on the complete instrumentation system, and on the trans-
ducer locations and installations, see Section 4.0.
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The cabin microphone locations and designations are shown in Figures 158
and 159. Those identified as MAXX are microphones in an axial array along
the left-hand side of the fuselage, about three inches from the skin
surface at about seated-head height. Those identified as MCXX are in
circumferential arrays around the left-hand side at the three indicated
fuselage stations, also about three inches from the skin surface. Those
identified as MBXX are located on the traversing microphone boom (TRAM),
in the grid arrangement shown, so as to survey the cabin cross section at
any fuselage station between FS 245 and FS 430. The normal position for
the TRAM was FS 301, the plane of the propfan. For certain selected
conditions, it was incrementally traversed from FS 245 to FS 430. The
exterior microphone locations and designations are shown in Figure 159 for
the fuselage and wing. The fuselage surface microphones were arranged in
axial and circumferential arrays at the locations illustrated. The wing
surface microphones were arranged in arrays situated in the expected path
of the propfan tip vortex on both the upper and lower surfaces. Upper and
lower surface microphones are identified as MUXX and MLXX, respectively.

The accelerometers on the fuselage and wing surface structure are shown in
Figure 160. Here also, there were axial and circumferential arrays
denoted with AAXX and ACXX identifications. There were five accelerometer
locations on window panes, denoted AWWX. All wing accelerometers were on
the lower surface and were denoted with AWXX identifications.

7.2.4.3 Test Envelope

The basic flight research test conditions were dictated primarily by
requirements for blade stress and near-field noise testing, These
requirements resulted in a large matrix of tests involving systematic
variation of altitude, flight speed, propfan shaft horsepower and rota-
tional speed, and nacelle tilt angle. The specific combinations of
parameters flown are shown in Figures 23 and 24. Cabin noise data were
obtained concurrently with these tests, so a wealth of data were recorded.

In addition to the basic cabin noise tests that were run concurrent with
other tests, a few tests were dedicated specifically to cabin noise.
These dedicated tests included: (1) ground diagnostic tests in which
cabin resonance modes were surveyed, and tests in which mechanical and
acoustic forces were applied to the structure to evaluate sound trans-
mission paths and to quantify relationships between noise and vibration;
(2) variation of cabin pressure during otherwise constant flight condi-
tions, to ascertain the need, 1if any, to correct the basic cabin noise
data for pressurization effects; and (3) spatial surveys of cabin noise
level for selected operating conditions, using the microphone traverse.

The specific conditions existent during the conduct of various concurrent

and dedicated tests are always noted in conjunction with the data presen~-
tation.
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7.2.4.4 Noise Characteristics

The character of the noise in the bare cabin was one of highly distorted
nonsymmetric sound pressure waves comprised of multiple tones standing
well above a random noise floor. The process of "transmission" through
the shell structure did not alter the fundamental character of the cabin
noise. The time histories (wave shapes) of the cabin sound pressures were
therefore similar to those of the exterior sound pressures, which are
discussed in detail in Section 7.2.2.3.

Typical examples of cabin interior and exterior sound pressure level
spectra are shown 1in Figure 161. These spectra are for microphones
situated in the area of maximum noise. The analysis effective bandwidth
is 3.75 Hertz.

At the baseline cruise condition noted, the cabin noise spectrum was
dominated by the blade-order tones and 1is consistent with the exterior
spectrum in all respects. No unexpected noise sources are evident; no
propfan noise traits are absent. The blade-order tones are evident
through the eighth order in both cases. Even higher-order tones would
have been visible had the instrumentation system been designed to operate
above 2000 Hertz.

The level of the first-order tone, 113.3 dB, was slightly lower than
expected for this condition. The wall noise reduction, NR, on the basis
of maximum interior and exterior levels, is seen to be 30 to 35 dB at the
low orders and 40 to 45 dB at the high orders. In subsequent sections it
will be seen that spatial NR values were always less than these numbers.

The interior noise spectrum for the case with the propfan removed is also
shown in Figure 161 for the same location and flight condition. The
results from these tests were inconclusive. At frequencies above about
600 Hertz, the broadband noise floor was slightly higher when the propfan
was operating. This may indicate a propfan broadband noise contribution
to the other sources, but not necessarily. The increase in broadband
noise with the propfan operating may derive from the drive engine inlet,
gearbox, or discharge, or from the higher velocity slipstream flow on the
nacelle and wing surfaces. However, even 1if this additional broadband
noise is assumed to originate at the propfan, there is some comfort in the
fact that the level is low, in the same range as normal aerodynamic noise,
and well below the tone maxima.

When the drive engine was not operating (propfan off), the engine intake
and discharge ducting systems formed large cavities that responded to the
flow excitation. These sources are suspected to be the cause of the
higher noise at 80 and 3500 Hertz.

The sound pressure levels at the blade-order tones varied significantly
with location as may be seen in Figures 162 through 165. Highest levels
did not necessarily occur nearest the propfan, nor did the lowest levels
occur farthest from the propfan. The levels were clearly influenced by
the dynamics of the shell structure and by the acoustic response of the
cabin volume.
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Noise level variation laterally across the cabin in the propfan plane
(Fuselage Station 30l) is shown in Figure 162 for an array of five micro—-
phones at seated-head height. Noise levels at any particular blade order
varied from 10 to as much as 25 dB. Similar variations occurred in the
fore and aft direction, as also seen in Figure 162, for a six-microphone
array along the left hand sidewall. Noise level variation circumferen-
tially was much the same, as shown in Figure 163, for an array of five
microphones at FS 301.

Lines of constant noise level at the first-order blade passage frequency
in the plane of the propfan (FS 301) are shown in Figure 164. Figure 165
shows a three-dimensional plot of the first-order noise at a constant
height of about 4 feet above the floor for a range of fuselage stations
and buttress lines. These data locations represent a fore/aft traverse of
TRAM microphones MBO4 through MBO7.

In each case illustrated, the propfan tip speed was 243 mps (797 fps),
which corresponds to a blade passage frequency of 226 Hertz. At other
blade passage frequencies, the noise level spatial variation was similar,
but highest levels occurred at other 1locations. This also resulted from
the influence of the shell dynamics and the cabin volume modal response.

The aforedescribed variability in noise 1level at individual microphone
locations tends to obscure the effects of the less influential parameters,
such as altitude, speed, power, pressurization, etc. In order to reveal
these parameter effects, it was necessary to examine noise level averages
for groups of microphones. Average curves for the three arrays of micro-
phones (Figures 162 through 164) are also shown 1in those figures and
reveal a smooth consistent trend of decreasing level with frequency. This
orderly behavior persisted during variation of the various parameters; so
hereafter, most of the cabin noise analysis results are presented and
discussed in terms of such averaged quantities.

7.2.4.5 Cabin Pressurization Effects

The sensitivity of cabin noise level to cabin pressurization was examined
in order to determine whether corrections should be applied to other data
obtained under conditions of varying cabin pressure. It was concluded
that cabin pressurization caused comparatively small effects, and the data
could be used "as measured" for assessing other test parameters.

Pressurization effects were determined by recording cabin noise data with
the cabin pressurized and unpressurized while flying the testbed aircraft

at constant speed, power, altitude, gross weight, and nacelle tilt angle.

Several propfan blade passage frequencies (tip speeds) were flown so as to

assess pressurization effects under varying structural response condi-
tions. The tests were conducted at 3,658m (12,000 ft), 0.60 Mach, maximum
continuous power (3764 kw (5048 PSHP)), and nacelle tilt of 1 degree down

(baseline configuration).

When pressurized at 3,658m (12,000 ft), °'the fuselage shell pressure dif-
ferential was 40,000 N/m? (5.8 psi); when unpressurized it was 2,068 N/m?

54



= Plockheed

(0.3 psi); a change of 37,932 N/m? (5.5 psi). For these two cases,
fuselage exterior sound pressure levels were averaged for 22 surface
microphones, and cabin interior levels were averaged for 32 lateral,
axial, and circumferential microphones. The results are shown 1in
Figure 166 for the first-order blade passage frequency. In Figure 166 it
is clear that the average cabin noise level is 1 to 5 dB higher with pres-
surization. Among the four blade passage frequencies, the mean noise
increase was about 3 dB. This noise change is attributed to stiffening of
the shell (attended by a resonance frequency shift toward the driving
frequency) and to increased cabin air density (attended by stronger
pressures radiated from the wall surfaces). The 37,932 N/m? (5.5 psi)
change in pressure produces a density increase of about 43 percent which
translates into a noise increase of about 3.1 dB. Thus, the effects of
shell resonance change with pressurization are negligible.

The effects of pressurization were also examined at the second and third
orders of blade passage frequency. The results were much the same--the
mean noise increase was about 3.5 dB, and there was a bit more scatter
about the mean.

7.2.4.6 Effects of Operating Conditions

Cabin noise varied with operating conditions in the same manner as did the
fuselage exterior noise. Therefore, the parameters discussed here are
limited to altitude, flight speed, propfan shaft power, and tip speed.
Fuselage noise sensitivity to these and other operating conditions is
described in Section 7.2.2.5.

The effects of cruise altitude and speed are illustrated in Figure 167 for
constant power and tip speed conditions.

The baseline cruise condition of 10,668m (35,000 ft) and 0.8 Mach is seen
to produce nearly the highest noise. At low-altitude cruise, average
cabin noise is down about 7 dB at the first order and 10 dB at the third.
The flight speeds shown are the high-speed condition appropriate for each
altitude.

It is noteworthy that the average interior noise trends consistently
follow the average exterior noise trends at each of the first three blade-
order frequencies (which are multiples of 226 Hertz). And for these first
three orders, the cabin noise level decreases about 5 to 7 dB per blade
order.

The difference between the two sets of data represents average cabin noise
reduction (NR). The average NR is seen to be in the range of 25 dB for
all conditions and all orders.

Interior and exterior noise at the blade-passage frequency are also seen
to be consistent when varying propfan power and tip speed at constant
cruise conditions. This is illustrated in Figure 168. The cabin average
noise levels changed about 8 dB between minimum (187 mps (615 fps)) and
maximum (254 mps (835 £fps)) tip speed. Likewlse, levels changed about
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8 dB when decreasing power from maximum (2394 kw or 3211 shp at this
altitude) to minimum (483 kw or 648 shp). It is noteworthy that at 483 kw
(648 shp) thrust was near zero; hence, blade lift was low, 1lift noise was
low, and the principal source was thickness noise. Despite these source
changes and the corresponding changes in directivity and spatial
variation, the exterior and interior noise trends and relationships were
essentially unchanged.

The horizontal scale of Figure 168 is also shown in terms of blade-passage
frequency. Within the range of 175 to 238 Hertz excitation, no signif-
icant influences of structural or acoustic resonance are evident. The
average noise reduction was consistently in the range of 25 dB. Similar
results were obtained at other altitudes and at the second and third order
of blade passage frequency. However, the variation in tip speed (excita-
tion frequencies) increased the scatter in noise reduction somewhat.

7.2.4.7 Structureborne Noise

The PTA cabin was unique in many respects, and this necessitated special
considerations in regard to SBN. These background factors and definitions
are therefore discussed prior to describing the PTA data results.

Herein, the term Structureborne Noise (SBN) refers to that noise that is
radiated into an airplane cabin by vibrating structures whose vibratory
motion arises from causes other than direct acoustic excitation. An
example of this SBN is cabin noise that is radiated by a section of a
floor or by a section of a fuselage shell which is attached or connected
to a wing, whereby the floor or shell structure is set into motion by wing
vibrations that arise from remotely located causes. It follows that in
the absence of remotely-generated cabin structural vibration, there would
be no SBN.

Airborne noise (ABN), on the other hand, is cabin noise that is radiated
by vibrating structures whose vibratory motion arises from the direct
impingement of oscillatory pressures (whether acoustic or hydrodynamic) on
the outer surface of the subject structure.

Given these definitions, SBN and ABN could be radiated into an airplane
cabin by the same structure, and they could also be radiated independently
by separate structures.

In any specific airplane with the wusual causes of vibration, the severity
or significance of SBN will be influenced by the airframe general
arrangement and the details of the cabin structural interconnections to
the other airframe components. To a large extent, these factors govern
how efficiently the remotely-generated vibrations are imparted to the
cabin structure. The significance of SBN will also depend on the type and
on the extent of the provisions included for cabin noise reduction. 1In
some cases, provisions that reduce airborne noise would automatically
reduce SBN as well. But in other cases, provisions that reduce ABN could
have no beneficial effect whatever on SBN. In this latter case,
comparatively weak SBN sources that are undetectable in a bare untreated
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airplane might become dominant in a finished airplane and produce a 'noise
floor" that could only be reduced by specialized provisions tailored
specifically to control individual SBN sources.

In view of the aforementioned dependencies and uncertainties, it would be
advisable in most airplanes, to conduct the SBN assessments after the
cabin is completely furnished in the configuration that is intended to
provide the desired passenger environment.

In the case of the PTA airplane, it was not possible to conduct the SBN
assessments in a finished cabin despite the previously noted advantages of
that approach. The PTA airplane cabin was completely bare throughout the
cabin test section. It was totally devoid of passenger furnishings, trim,
floor covering, or thermal insulation. This configuration was consistent
in all of the cabin noise data flights. Consequently, the PTA data that
are available for SBN assessments are for circumstances where ABN levels
were high--much higher than would be tolerable in a normal passenger
environment.

However, the PTA airframe configuration and the cabin structure inter-
connections to the wing are conducive to efficient SBN transmission. And
the bare cabin interior that gave rise to the high ABN levels might also,
in some areas at least, have given rise to proportionately high SBN levels
as well. Given this distinct possibility, it was considered prudent and
worthwhile to assess SBN in the PTA cabin. It must be reemphasized that
the results derived therefrom would be limited to, and valid only for, the
PTA airplane. The ultimate goal of gaging the relative importance of SBN
for a generalized, low-noise propfan airplane could not be addressed.

Accordingly, static tests and flight tests were conducted to diagnose the
mechanisms of sound transmission into the PTA cabin. The static test
setup and the acoustic and vibration test apparatus are illustrated in
Figure 169. One of these tests involved application of discrete and ran-
dom forces to the wing front and rear spars, using an electromagnetic
vibrator to generate force. In these tests, the vibration excited in the
wing lower surface, and the resultant noise in the cabin, which is totally
structureborne noise, were measured and correlated. This correlation be-
tween wing vibration and cabin structureborne noise then served as a basis
for predicting in-flight structureborne noise using in-flight wing vibra-
tion data.

The relative vibratory responses in the wing and fuselage structures are
depicted in Figure 170 for the case of excitation at the wing front spar
outboard of the drive engine. A strong vibratory response is evident
along the chord line where the shaker 1is located. The average vibration
among the remaining wing accelerometers inboard of the engine is compar-
atively low; in fact, lower than the average vibration in the fuselage
near the propfan plane. Clearly, the fuselage shell responded readily to
vibration in the wing.

Shaker excitation of the wing was evaluated in terms of vibratory and
acoustic response level and response linearity for force application at
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the front spar in the inboard and outboard regions of the propfan slip-
stream and at the rear spar in the inboard slipstream region. 1In the
overall, the inboard front spar area was judged to be more influential on
cabin response.

A typical spectrum of the force applied is provided in Figure 171, showing
the multi-tone discrete/random force character. The three tones are con-—
sistent with the first three orders of blade passage frequency. The
corresponding vibration spectrum resulting at the same inboard front spar
location is shown in Figure 172. The vibration is seen to have increased
with order number while the force decreased.

The blade-order acceleration and noise levels were averaged (using a power
ensemble averaging technique) for each test case, and for convenience of
comparison, were normalized to a reference unit per pound (4.446 Newton)
force. Figure 173 shows normalized average wing vibration levels for the
three tone frequencies and three excitation 1locations. These results
show: (1) linear relationship between force and wing vibration at all
frequencies and locations, and (2) equal or higher response at the inboard
front spar location. (A horizontal 1line on the normalized noise/force
scale indicates that noise changed in direct proportion to force.) Simi-
larly, Figure 174 shows normalized average fuselage vibration levels.
These results show a linear relation to force at the inboard front spar
and a nonlinear relation at the other two locations. At high force
levels, the fuselage vibratory response is again highest for the case of
inboard front spar excitation. For this case, fuselage levels are well
below wing levels. The normalized average noise levels from the TRAM
microphones at a fuselage station (TRAM position) near the front spar are
shown in Figure 175. Cabin noise is seen to be linearly related to in-
board front spar excitation force.

From these tests and analyses, it is clear that a propfan-induced oscilla-
tory force on the wing can produce readily observable vibration and cabin
noise. Also, the average cabin noise can be related to average wing vi-
bration via Figures 173 through 175. For example, from Figure 173, at an
inboard front spar relative force level of 15 dB at 225 Hz:

Wing <AL> - FL = 79 dB

(where the brackets denote a spatial average). From Figure 175 it can be
seen that:

Cabin <SPL> - FL = 55 dB

at the same shaker frequency. Thus Cabin <SPL)> is related to wing accel-
eration levels by:

Cabin <SPL> = Wing <AL> - 24 dB
Using such empirical relationships, wing average vibrations measured in

flight were used to estimate structureborne cabin noise levels. Examples
are shown in Figure 176 for two extremes of altitude/speed conditions.
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Also shown are the measured average cabin noise levels. It can be seen
that the predicted structureborne noise 1is significantly lower than the
measured noise except at BPF 3 at the low-altitude, low-speed condition.

Since the structureborne noise levels predicted for the PTA bare cabin
(and shown in Figure 176) are higher than the total noise desired for a
passenger environment, a reduction of the airborne noise without a re-
duction of the structureborne noise would result in a significant pre-
dicted structureborne noise problem. As stated previously, however,
whatever might be done to reduce cabin airborne noise might reduce cabin
structureborne noise as well. Such outcomes were not predicted and remain
unknown.

An empirical relationship between cabin structureborne noise and the wing

vibration intensity data was developed. Predictions with this technique
showed that for the acoustically untreated PTA configuration, structure-
borne would be much lower than airborne noise. If airborne noise were

reduced to an acceptable level, however, a reduction of structureborne
noise might then become necessary.

One source of structureborne noise in the PTA cabin is wing structural
vibration that, in turn, causes fuselage structural vibration. A princi-
pal cause of wing vibration is the impingement of the propfan tip vortex
and wake fluctuating pressures on the wing surfaces. Therefore, structure-
borne noise might be more evident (over and above the airborne noise) at
the flight conditions where wing FPLs were highest relative to the fuse-
lage SPLs--conditions where fuselage exterior noise was low and slipstream
fluctuating pressures on the wing were high. There were conditions where
this was the case.

Figure 177 shows that at high-altitude, high-speed cruise and at a tip
speed of 244 mps (800 fps), the highest FPLs on the wing surface were
about 3 dB greater than the highest SPLs on the fuselage surface. The
3 dB difference increased to about 8 dB at a tip speed of 189 mps
(620 fps). At low-altitude and low-speed cruise and a tip speed of
244 mps (800 fps), the difference between these maximum FPLs and SPLs, as
shown in Figure 146, increased to nearly 18 dB. At this condition a re-
duction of tip speed to 189 mps (620 fps) further increased the FPL-SPL
difference to the range of 25 dB. Clearly, this is a condition where
structureborne noise may be likely to occur.

Accordingly, the in-flight cabin noise data were further examined for
evidence of a structureborne noilse contribution, and in this exercise,
average noise reduction (NR) was used. Average NR 1is defined as the
difference between average exterior and average interior noise levels. NR
is largely determined by sidewall suppression and interior absorption, and
typically varies with cabin pressurization and frequency. However, if any
other source such as systems noise or structureborne noise were introduced
so as to increase the cabin noise relative to exterior noise, or to sus-
tain cabin noise level while exterior noise decreased, then NR would de-
crease in accord with the contribution of the new source. In other words,
a significant decrease in NR would suggest the appearance of a cabin noise
source other than ABN. This process would be capable of detecting SBN,
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however, only in those cases in which the SBN level is near or higher than
the ABN level. Thus, this approach would be quite insensitive to SBN at
BPF in the PTA cabin wherc the level in the untreated cabin is much higher
than the level typical of an acoustically treated cabin.

Average NR at the first three orders of blade passage frequency is shown
in Figure 178 for a range of cruise conditions and a constant power and
tip speed/BPF condition. In this illustration it is seen that average NR
is virtually unchanged between 10,668m (35,000 ft) and 1,524m (5,000 ft)
where structureborne noise is most likely to be a factor. The small
changes that are visible in the data are thought to be the result of nor-
mal data scatter. Therefore, ABN was still higher than SBN at these
conditions.

Average NR was further examined for the first-order of the blade passage
frequency over the full range of tip speeds. This varied the first-order
frequency from 238 Hertz down to 175 Hertz and further decreased fuselage
SPLs relative to wing FPLs. The results are shown in Figure 179 for a
range of altitudes. These results reveal a mild deterioration in NR at a
tip speed of 229 mps (750 fps), and also at the lowest tip speeds, and
suggest the possible presence of non-airborne noise at these low-altitude,
low-tip-speed conditions. Further analysis would be necessary to deter-
mine whether or not this .pparent non-airborne noise is SBN.

This could be a noteworthy result. It suggests an approach to testing
that might be fruitful. If soundproofing were temporarily added in such a
way as to intentionally reduce ABN but not SBN, then clearer definition of
SBN might be obtained. Transmission paths could then be investigated, and
an empirical relationship between SBN and wing FPL could be developed and
subsequently used to predict SBN at other conditions of interest (such as
the design cruise condition). SBN 1levels predicted in this manner would
provide a basis for estimating the amount of SBN reduction required, if
any, to achieve an acceptable passenger environment.

As stated previously, all of the evidence, or lack of evidence of struc-
tureborne noise discussed in this section, 1is derived from tests of the
unfurnished acoustically untreated PTA cabin. It remains unknown whether
SBN would be significant in either a generic or a specific multi-engine
low-noise propfan-powered airplane.

7.2.4.8 Cabin Noise Redu:tion

While the PTA Program did not include an effort to reduce cabin total
noise to a specific objective, it may be useful to roughly quantify the
extent of noise reduction required.

At the baseline cruise condition of 10,668m (35,000 ft), 0.8 Mach, the "a"
weighted sound levels of the bare PTA cabin ranged from 106 dBA to 86 dBA
over the first seven blade orders, as illustrated in Figure 180. These
levels sum to an "A" weighted overall level of 110 dBA. A reasonable
cabin noise target (discounting the presence of discrete tones), might be
about 80 dBA. 1In order to reduce the 110 dBA level to an overall of about
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80 dBA, a soundproofing insertion loss (IL) of at least 30 dB is required.
This assumes a treatment that is equally effective at all orders. A pro-
duction airplane with multiple propfans would probably require at least 35

dB of soundproofing IL. Allowing for the additional annoyance of pure
tones, for design margins, and for contributions from other sources, an
appropriate IL target might be 40 dB. Recognizing that the NR measured

for the shell structure averaged about 25 dB (see Figure 178), the com-
bined wall and soundproofing total IL required would be about 65 dB. This
degree of noise reduction presents a substantial challenge to the sound-
proofing designer. However, noise control research now in progress (and
independent of the PTA Program) indicates that such a target will be
achievable.

7.2.4.9 Observations

In the evaluation and interpretation of the cabin noise data, the follow-
ing was observed.

1. The cabin noise was dominated by blade-order tomnes.

2. The first and second blade-order tones were, on an "A" weighted
basis, equally annoying.

3. 1Interior noise spectra were consistent with exterior noise spec-
tra after 25 to 30 dB of noise reduction (NR).

4. The propfan broadband noise level was low--in the same range as
the boundary layer noise.

5. The propfan tone noise varied with location by 15 to 20 dB at any
blade-order frequency.

6. The effect of pressurization on cabin noise level was small. The
most influential factor is the air density increase with pressur-
ization.

7. The effects of power, tip speed, altitude, and flight speed were
consistent between cabin noise and exterior noise, i.e., a de-
creasing tip speed and power decreased cabin noise and exterior
noise similarly.

8. The PTA cabin SBN levels that were predicted using wing vibration
correlation techniques indicated some levels above those desired
for an acceptabl; quiet cabin.

9. The PTA bare cabin noise environment was dominated by airborme
noise.

10. The noise reduction afforded by the bare cabin wall averaged
about 25 dB at the first three blade orders.

11. An additional cabin wall insertion 1loss of at least 30 dB over

and above that provided by the bare wall would be required to
achieve an 80 dBA passenger enviromment in the PTA cabin.
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8.0 CONCLUDING REMARKS

The Propfan Test Assessment Program produced a considerable amount of
high-quality flight test data on the structural integrity of, and noise
propagation from, a high performance, single rotation propfan.

Blade vibratory response data, which were dominated by 1P loads, showed
the propfan to be well-behaved structurally over the entire operational
envelope of the aircraft. Predicted 1P blade responses at low flight
speeds were about l5-percent higher than measured at the critical inboard
bending gage. At high speeds also, predicted 1P blade response was higher
than measured, but good comparisons were precluded by the extreme sensi-
tivity of the predictions to propfan inflow angle and insufficient pre-
cision in the aircraft angle of attack measurement system. Neverthe-less,
measured data for all tests showed blade design methodology to adequately
predict all critical loading conditionms.

Blade response data correlated well with the excitation factor, which is
proportional to the mean inflow angle at the propeller plane and the mean
inflow dynamic pressure. Excitation factor was varied over a range from
-3 degrees to +2 degrees, relative to the fuselage reference plane, with a
variable nacelle tilt feature designed into the aircraft. The -1 degree
position appeared best for low blade vibratory response over the test
envelope.

As expected, noise of the propfan was characterized by tones at blade
passage frequency and higher harmonics. There was little or no evidence
of significant propeller broadband noise. Noise directivity was
relatively strong--not only fore and aft of the propeller plane, but also
relative to the direction of rotation in the propeller plane. Low-
altitude, far-field noise, for instance, was greater on the side of the
aircraft away from the propfan than on the near side. Far-field noise
levels were greater than predicted, but sensitivity of these noise levels
to propfan tip speed and power provides the designer with optimization
tools to attain desired community noise levels.

Radiated noise was also strongly affected by propeller inflow angle. One
of the greater deficiencies of the noise predictions resulted from inade-
quate recognition of this effect. Generally, however, the prediction
methods adequately dealt with the trends of power, airspeed, and tip speed
effects, although absolute levels were often missed by amounts greater
than 3 dB. For this up-inboard rotating propfan, increasing nacelle tilt
(or inflow angle) reduced noise on the fuselage surface inboard and in-
creased noise on the boom surface outboard. This suggests that nacelle
tilt angle may be used to optimize noise radiation to the cabin, but, of
course, the impact on blade vibratory stress must alsoc be considered.

Prediction methods did very poorly in the area of fluctuating pressure

levels in the propfan wake-—underpredicting by amounts averaging about
30 dB. Obviously, there is a need for improved analysis in this area.
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Cabin noise measurements showed the untreated cabin walls to reduce noise
levels about 25 dB. With exterior noise levels at 145 to 150 dB, however,
it is estimated that additional wall treatment with insertion loss of
about 40 dB would be required for commercial application. The data showed
little evidence of structureborne noise being significant, but there was
some implication that it could become important as cabin noise levels are
reduced.
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APPENDIX A

PROPFAN BLADE EXCITATION FACTOR

Whenever a lifting rotor (propeller, propfan, etc.) operates in a uniform
flow parallel to the rotor centerline, each blade is loaded uniformly at
every point in the rotation cycle, and no vibratory loads are generated.
1f, however, the rotor is inclined at an angle Y/ to the flow field, the
local angle of attack which each blade experiences varies as the blade
rotates around the propeller plane.

This may be illustrated by Figure A-l. For a propfan with its axis at
positive angle of attack, the blade on the side moving down will have a
lower angle of attack than on the side where it is moving up. Thus, angle
of attack will vary cyclically in the manner shown in Figure A-2.
Consequently, blade loading will also vary cyclically--giving rise to
once-per-revolution (1P) loads. For a propeller mounted on an aircraft,
flow angularity due to yaw may also exist, and Y/ can be considered to be:

y=va® +p?

If the flow in which the propeller is immersed is not uniform, higher
order (nP) cyclic loading wmay exist. For instance, the presence of a
wing or pylon behind the rotor may cause a perturbation in velocity to
feed forward into the propeller plane to create a local disturbance.
Similarly, the presence of an engine inlet may also create velocity
perturbations in the propeller plane.

The relative magnitude of these vibratory loads has been quantified by
Hamilton Standard using an empirically derived parameter called excitation
factor, or EF. The 1P loading 1is directly related to the freestream
dynamic pressure and the inflow angle by the equation:

e 2
EF |, = ¥ (379 for V; in mps

E 2
or Y (3—45 for V, in kts

Figure A-3 shows a plot of 1P EF as a function of angle of attack for the
PTA configuration. It can be seen that there are two sets of curves—--one
for tilt of the nacelle in the vertical plane (where the nacelle tilt
angle adds to the angle of attack effects), and a second for the effects
of yaw angle (which is almost independent of angle in the vertical plane).
When the effects of yaw and pitch angles are added, the results are as
shown in Figure A~4. Here it can be see that the effects of yaw are such
that there is always an absolute value of EF greater than zero.
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Finally, plots of equivalent EF for the PTA configuration are shown in
Figure A-5. Equivalent EF includes higher order excitation due to those
configurational aspects that are unique to the PTA. Values of EF were
obtained by applying a magnification factor to the 1P EF values of Figure
A-4. This magnification factor was determined by Hamilton Standard after
the configuration was defined and preliminary predictions of the flow
field in the plane of the propeller had been made.
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APPENDIX B

LOCATION OF MICROPHONES, ACCELEROMETERS,
AND STRAIN GAGES ON PTA AIRCRAFT
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TABLE B-2.
CABIN FIXED MICROPHONE LOCATIONS

FUSELAGE | WATER | STRINGER
TRANSDUCER | STATION LINE NUMBER DESCRIPTION
MAO1L 247 119 9 Axial Array
MAOQ2 274 119 9 Axial Array
MAO3 301 119 9 Axial Array
MAO4 328 119 9 Axial Array
MAOS 355 119 9 Axial Array
MAO6 409 119 9 Axial Array
MCO1 274 119 1 Circumferential Array
MC02 301 139.9 1 Circumferential Array
MCO3 328 139.9 1 Circumferential Array
MCO4 274 131.7 5 Circumferential Array
MCO5 301 131.7 5 Circumferential Array
MCO06 328 131.7 5 Circumferential Array
MCO7 274 94.1 13 . Circumferential Array
MCO08 301 94.1 13 Circumferential Array
MCO09 328 94.1 13 Circumferential Array
MC10 274 75.4 17 Circumferential Array
MC11 301 75.4 17 Circumferential Array
MCl12 328 75.4 17 Circumferential Array
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TABLE B-3.
CABIN MOVING MICROPHONE LOCATIONS

FUSELAGE WATER BUTT

TRANSDUCER STATION LINE LINE DESCRIPTION
CBM1 Variable 77 30.8L | Circumferential Array
CBM2 241 to 433 94.1 37.9L | Circumferential Array
CBM3 241 to 433 114.7 35.6L | Circumferential Array
CBM4 241 to 433 | 131.7 | 22.7L | Circumferential Array
CBM5 241 to 433 139.9 0 Circumferential Array
CBM6 241 to 433 131.7 | 22.7R | Circumferential Array
CBM7 241 to 433 114.7 35.6R Circumferential Array
CBM8 241 to 433 94,1 37.9R | Circumferential Array
CBM9 241 to 433 77 30.8R | Circumferential Array
GBM1 241 to 433 77 12L Rectangular Grid
GBM2 241 to 433 94,1 12L Rectangular Grid
GBM3 241 to 433 114.7 12L Rectangular Grid
GBM4 241 to 433 114.7 12R Rectangular Grid
GBM5 241 to 433 94,1 12R Rectangular Grid
GBM6 241 to 433 77 12R Rectangular Grid
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TABLE B-6.
CABIN ACCELEROMETER LOCATIONS

FUSELAGE WATER STRINGER
TRANSDUCER STATION LINE BL NUMBER DESCRIPTION

AF02 297.0 70.1 17 Wing/Floor Array
AFO03 297.0 70.1 17 Wing/Floor Array
AF04 297.0 70.1 17 Wing/Floor Array
AF05 379.0 70.1 17 Wing /Floor Array
AF06 379.0 70.1 17 Wing/Floor Array
APO1 301.8 115.2 Panel Array
APO2 301.8 95.8 Panel Array
AWW1 272.5 112.1 10 Window Array
AWW2 284.9 112.1 10 Window Array
AWW3 309.1 112.1 10 Window Array
AWWL 321.5 112.1 10 Window Array
AWWS 321.5 106.0 11 Window Array

*AA01 348.0 71.0 17 Axial Array

*AAQLA 348.0 71.0 17 Axial Array
AAO2 379.0 71.0 17 Axial Array

*AA03 379.0 71.0 17 Axial Array

*AA03A 379.0 71.0 17 Axial Array

**AAQL 412.0 71.0 17 Axial Array

**AAQLA 412.0 71.0 17 Axial Array

**AA04B 412.0 71.0 17 Axial Array

*AAO05 412.0 71.0 17 Axial Array

*AAOQSA 445.5 71.0 17 Axial Array
ACOl 287.5 139.1 5 Circumferential Array
ACO2 287.5 118.2 9 Circumferential Array
ACO3 287.5 92.3 13 Circumferential Array
ACO4 287.5 70.1 17 Circumferential Array
ACO5 297.0 149.1 1 Circumferential Array
ACO06 297.0 139.1 5 Circumferential Array
ACO7 297.0 118.2 9 Circumferential Array
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CABIN ACCELEROMETER LOCATIONS (CONT'D)

FUSELAGE WATER STRINGER
TRANSDUCER STATION LINE BL NUMBER DESCRIPTION

ACO08 297.0 92.3 13 Circumferential Array
ACO09 297.0 70.1 17 Circumferential Array
ACl10 297.0 53.4 21 Circumferential Array
ACl1 306.5 149.1 1 Circumferential Array
ACl12 306.5 139.1 5 Circumferential Array
ACl13 306.5 118.2 9 Circumferential Array
ACl4 306.5 92.3 13 Circumferential Array
AC15 306.5 70.1 17 Circumferential Array
ACl6 306.5 53.4 21 Circumferential Array
ACl7 306.5 139.1 5R Circumferential Array
ACl8 306.5 118.2 9R Circumferential Array
ACl9 306.5 92.3 13R Circumferential Array
AC20 306.5 70.1 17R Circumferential-Array
AC21 306.5 53.4 21R Circumferential Array
AC22 321.5 118.2 9 Cabin Sidewall

AC23 370.5 118.2 9 Cabin Sidewall

NOTE: * Intensity pairs (_,A) straddle location +0.75 inch in
vertical direction.

** Intensity triangle (_,A,B) _,B direction is true airframe
fore and aft.
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TABLE B-7.

WING ACCELEROMETER LOCATIONS

FUSELAGE BUTT
TRANSDUCER STATION LINE
AWO1 352.4 48.00
AWO1A 352.4 48.00
*AWO02 352.4 48.00
*AW024A 352.4 48.00
AWO3 369.9 82.00
AWO4 380.1 101.5
AWOS 394.5 128.2
AWO05A 394.5 128.2
AWO06 432.5 201.0
AWO8 411.1 112.6
AWO9 387.4 48.0
AW1l 387.4 48.0
AW11A 411.1 48.0
AW11B 411.1 48.0
AW13 423.3 82.0
AWl4 429.9 107.8
AW15 443.5 138.6
AW15A 443.5 138.6
AW16 462.4 191.0
AWl7 453.4 112.4
AW18 430.3 48.0
AW18A 430.3 48.0
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TABLE B-7.
WING ACCELEROMETER LOCATIONS (CONT'D)

FUSELAGE BUTT

TRANSDUCER STATION LINE
AW20 455.7 48.0
AW20A 455.7 48.0
**AW21 455.7 48.0
**AW21A 455.7 48.0
AW22 461.7 65.0
AW23 476.4 110.2
AW24 487.0 140.8
AW24A 487.0 140.8
AW25 505.6 193.2

Intensity pairs are installed +0.75 inches
spanwise except AWll, 11A, and 11B which are
+0.75 inches spanwise and chordwise.

* On Front Beam

*%* On Rear Beam
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TABLE B-8.
LEFT WING STRAIN GAGE LOCATIONS

FUSELAGE BUTT GAGE .

TRANSDUCER STATION LINE DIRECTION DESCRIPTION
SGO1 355.0 54 Parallel to Spars | Upper Spar Cap
SGO1A 355.0 54 Parallel to Spars | Upper Spar Cap
SG02 355.0 54 Parallel to Spars | Lower Spar Cap
§G02A 355.0 54 Parallel to Spars | Lower Spar Cap
SGO3 363.5 71 Parallel to Spars Upper Spar Cap
SG04 363.5 71 Parallel to Spars | Lower Spar Cap
SGO5 355.6 54 Parallel to Spars | Forward Web
SGO 5A 355.6 54 Parallel to Spars | Forward Web
SGO06 458.5 54 Parallel to Spars Upper Spar Cap
SGO6A 458.5 54 Parallel to Spars Upper Spar Cap
SGO7 458.5 54 Parallel to Spars | Lower Spar Cap
SGO7A 458.5 54 Parallel to Spars Lower Spar Cap
SG08 457.9 54 Parallel to Spars | Rear Web
SGO8A 457.9 54 Parallel to Spars Rear Web
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11.14" STA ,

LONGITUDINAL STRAIN GAGE
(4 PLACES)
14.32°

AXIS X

AXIS X

)
)

\STACKING

PLANE

N

o

Figure 9. SR-7L Shank Strain Gage Locations
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STRAIN

ZONE MICROPHONES | ACCELEROMETERS | GAGES TOTAL
FUSELAGE, EXTERNAL 45 NIL NIL 45
FUSELAGE, INTERNAL 33 45 NIL 78
WING 44 32 14 90
PROPULSION SYSTEM NIL 20 NIL 20
WING BOOM S 2 NIL 7
TOTAL 127 99 14 240

Figure 14. Distribution of Acoustic and Vibration Transducers
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FLIGHT "
¥ PATH

(a) Configuration A

A ey
GRASS™N,) |4

% MICROPHONE
STATION

‘j’ \\m
O
er )L ) QA T jﬁ@Ju

3s

MICROPHONE STATIONS

DISTANCE FROM
FLIGHT PATH
NO. METERS (FT)
- - - @  MICROPHONE STATIONS
) s 4§s; A TETHERED WEATHER BALLOON
i : &z)g Eggg; B LOCXHEED INSTRUMENT VAN
5 1377 (4618) #  OPERATIONS TOWER
5 1793 (s881) Y BASE WEATHER
7 2469 (8100) ® RADAR CENTER

Figure 15. Ground Instrumentation for Low-Altitude Tests
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(b) Configuration B

DISTANCE FROM FLIGHT PATH

METERS 450 725 1000 1377
(FT) (1476) (2379) (3821) (4518)

|

Q
R ‘

—
—
—

L MICROPHONES AT
GROUND LEVEL AND
1.2M (4 FT) ABOVE
GROUND

FLIGHT PATH

Figure 15. Ground Instrumentation for Low-Altitude Tests
(Continued)
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(c) Configuration C

DISTANCE FROM FLIGHT PATH

METERS 890 450 165 165 450 890
(FT) (2921) (1476) (540) (540) (1476 (2921)

AN

|

|

!

< MICROPHONES AT |
GROUND LEVEL AND |
1.2M (4 FT) ABOVE y

GROUND FLIGHT PATH

Figure 15. Ground Instrumentation for Low-Altitude Tests
(Continued)
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1" MICROPHONE

(a)

CRIGINAL PAGE
BLACK AMD WHITE PHOTOGRAPH

: MICROPHONE B i
AT GRAZING]
INCIDENCE }

GRASSY
SURFACE

4-Ft Microphone

ASPHALT SURFACE B

Inverted Microphone (b)

Figure 16. Ground-Based Microphone Arrangement
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LATERAL
ATTENUATION

.

FAR-FIELD NOISE
TEST OBJECTIVE

DIRECTIONALITY

MICROPHONES AT l

GROUND LEVEL AND [

1.2M (4 FT) ABOVE

GRGUND

FLIGHT PATH
A

Figure 22.

Low—-Altitude Flight Paths at NASA
Wallops Flight Facility
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Figure 23. -1° Nacelle Tilt Test Conditions, Propfan On
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Np | 772 ] 1052
POWER ot Np | 1002 | e P T 10021
MAX CONT X X E o P £
MINIMUM X X MAX CONT X :?;lﬁng i ;
N, | 772 T 87.52] 1002 | 1052
POWE
ONER x ™, | e
MAX CONT X X X F 87.0| 1000
sz X G | 78.6] 8.0
MINIMUM X H 1028 2.2
J_[705.0/700.0
No | 772 [87.52] 1002 | 105X 4.81 78.4
POWER T
N__1105.0700.0
MAX CONT | X X X X 0_1700,11790,7
No | 772 [78.77[81.37] 84.4% | 87.57 ] 90.6Z | 93.82 ] 96.9% | 100% [102.52] 105T
POWER
MAX CONT X X X X X X X X X X X
802 X
502 X
MINIMUM X
o | 772 [81.32] 87.52 93.57| 1002 | 108X
POWER
MAX CONT X X X X X X
807 X X X X X X
502 X X X X X X
© MINIMUM X X X X X X
0= 12 : E_ 0
AIRSPEED
KM/HR (KCAS) P
35 . B
0 370 (200) +—_ (A o o
463 (250) <] —Q
30 556 (300) / /
m 626 (338)-\ ‘/p) /
= S _\ 8 E/ p
g S 8 N \SL A, B
BT~ /SN
wvy
o204 5 6 N /
. = / /N
o . )
=154 S / é 4
= 1549 = B C
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T —
104 < /
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ALTITUDE, FEET x 1000
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Np | 100%
N 7717 | 1052 D POWER
A POWER MAX CONT X
MAX CONT X X
MINTMUM X N, [ 87.52] 1002
POWER
N, | 777 | 87.52] 100Z | 1052 MAX CONT X X
B PONER <E> 807 X X
MAX CONT X X X X MIN?%M § ,)E
502 X
N1 772 | 78.12 ]| 81.32 ] 84.4% | 87.52 | 90.6Z | 93.8% | 96.9% | 100Z [102.52| 1052
C POWER
MAX CONT X X X X X X X X X X X
502 X
40 — 12 - -
AIRSPEED % D
i KM/HR (KCAS) ) og” A8 &
370 (200) 4+~ O4
10 463 (250) T ” v
0 556  (300) —\ /
30 626 (338)-—_§ /& 7/
57 x % /
(7]
& 1.3 Vg N4
204 = 6 N A ,/ N
S / /s
W
| 0 e |/
15 E . / E 'r 4
=
04 = / /
/
2 ,/ I, /
5 — B fD / A @B
/
A A 7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
MACH NUMBER
Figure 24. =-3° and +2° Nacelle Tilt Test Conditionms, Propfan On
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ALTITUDE, FEET x 1000

A&B | POWER

N

72

87.52

100Z | 105%

MAX CONT

FOR EACH "A" TEST CONDITION SHOWN,
POSITIONS SPACED AT 10.25-INCH INTERVALS BETWEEN FS 250 AND FS 440

FOR EACH "B" CONDITION SHOWN,

SET SPEY ENGINES EQUALLY AT
THRUST REQUIRED FOR LEVEL
FLIGHT

POSITION TRAM AT 18 DISCRETE

POSITION TRAM AT FS 301 AND RECORD
DATA WITH FUSELAGE UNPRESSURIZED AND WITH MAXIMUM APPROVED CABIN
PRESSURE SETTING

40 — 12 v ”
AIRSPEED /
KM/HR (KCAS)
35 — A
370 (200) —_ A /
10 463 (250) T~ ” v
556  (300) -_\ /
30 - 626  (338) -% /
Eg . N 1/ 4//
S 8 ~J 4 /
25 = x ‘\\\\Ny/, //
& 1.3 Vg— '
20 - E 6 \ A ,/ N
= // /N
] /
]5 7 E 4 // / / /
= //GDB
<C
10 — /
2 ,/ /
5 — A / /
/
0 .J 0 / / ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MACH NUMBER
Figure 25. Cabin Noise Survey (TRAM) Test Conditions

(-1° Nacelle Tilt)
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ALTITUDE, FEET x 1000

40 —

35 -

30 -

20“

10 -

ALTITUDE, METERS x 1000

12

10

Figure 26.

Np 7177 1052
POWER
MAX CONT X X
MINIMUM X

NACELLE TILT = -1°
YAW ANGLE = +2.5°& -5°

MACH NUMBER
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Yaw Angle Test Conditions, Propfan On
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KM/HR (KCAS) ///////// A
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/
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ALTITUDE, FEET x 1000

SPEY ENGINE THRUST SPEY ENGINE THRUST
NO. 1 NO. 2 NO. 1 NO. 2
A FLT IDLE | MAX CRUISE B MAX;g%HSE ﬂﬁi ggg%ég
FLT IDLE 702
FLT IDLE 402 40 MAX CRUISE
FLT IDLE 10Z FLT IDLE MAX CRUISE
40— 12 : ,
AIRSPEED / By
KM/HR (KCAS) ////
33 4 370 (200) 4—~_ ) /)’ @8]
10 463 (250) =] ~ o
556  (300) -_‘\\\\N ///
30 626  (338) 4::::::: o5 /
<o
g 8 N \\L ’/ //
25 o E:EEES?// /
g 1.3 V .
& T STN N/
204 = 6 N / .
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Ll A /
15 H E 7/ B /
= 4 y
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10 < / / /
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A ’ 4
5 — / y A
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0 0 /
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Figure 27. Propfan-Off Test Conditions
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CONDITION 350, FLT 16, RUN 44 24-SEP~87
( 1)DATE = 710.870 { 64)TQSD = 2.14904 PT-LBF
( 2)FLT = 16.0000 { 65)PSHP = 3129.37 HP
( J)RUN = 0.000000E+00 ( 66)SHPC = 88888.0 %
( 4)STME = 15:03:15.301 H/M/S ( 67)RPML = 9399.9078 %
( S5})ETME = 15:03:59.801 H/M/S { 68)RLMX = 100.070 %
( 6)TAMB = 0.000000E+00 DEGREE ¢ ( 69)RLMN = 99.4531 3
{ 7)PAMB = 0.000000E+00 PSI ( 70)RLSD = 0.149800 X
{ 8 )RH = 0.000000E+00 % ( 71)PMCP = 0.000000E+0Q %
{ 9)WSMX = 0.000000E+00 KNOTS ( 72)RPT = 11489.4 RPM
{ 10}WSMN = 0.000000E+00 XNOTS ( 73)RPMH = 97.3413 3
{ 11)WSAG = 0.000000E+00 XNOTS ( 74)RHMX = 97.4414 X
( 12)WSD = 0.000000E+00 DEGREE { 7S)RHMN = 97.1328 X
{ 13)PAMD = 0.000000E+00 SLUGS/FT*3 ( 76)RHSD = 0.581600E-01 %
{ 14)CG = 1087.11 FPS ( 77)RPMC = 13919.8 RPM
{ 15)PMCG = 0.000000E+00 LBF-SEC/FT*]} { 78)cri = 3638.31 HZ
{ 16)ACGW = 58105.6 LBF ( 79)TF1 = 13787.3 HZ
{ L7)MTRU = 0.800760 ( 80)PRPM = 1690.27 RPM
{ 18)HAGL = 0.000000E+00 FEET [ 81)VROT = 796.519 FPS
( 19)HPT = 34954.9 FEET { 82)VFWD = 791.472 FPS
( 20)HPMX = 35015.4 FEET { 83)VTH = 1122.89 FPs
( 21)}HPTM = 34911.7 FEET ( 84)PTMR = 0.806391
( 22)HPSD = 17.8101 FEET { 85)MFWD = 0.800760
{ 23)KTAS = 468.604 KNOT { 86)TMTH = 1.13680
( 24)KTMX = 470.279 KNOT { 87)BAPF = 58.40136 DEGREE
( 25)KTMN = 467.279 KNOT { 88)BAMX = 58.4375 DEGREE
( 26)KTSD = 0.616170 KNOTS { 89)BAMN = 53.3739% DEGREE
{ 27)VOo0 = 791.472 FPS { SO0)BASD = 0.882000E-02 DEGREE
( 28)KCAS = 272.496 KNOT { 31)1IA = 0.809540 DEGREE
{ 29)TTNB = -18.5970 DEGREE C { 92)SHPA = 3072.53 HP
( 30)TTMX = -18.46838 DEGREE ¢ { 93)PSTQ = 9S547.14 FT-LBF
( 31)TTMN = -18.9316 DEGREE C { 94)FNST = 1583.16 LBF
(32)TTsSD = 0.118700 DEGREE ¢ { 95)PBHP = 384.066 HP
{ 33)OATC = ~47.6200 DEGREE C { 96)PFBT = 1193.39 FT-LBF
{ 34)PA = 499.025 PSF ( 97)PFBF = 197.895§ LBF
{ 3S)PTOT = 761.262 PSF ( 98)PDPL = 37.9324 HP/FT*2
{ 36)CO00 = 987.758 FPS ( 99)JpP = 3.12151
{ 37)sGeMA = 0.301300 (100)CP = 1.78716
( 38)PMO = 0.716630E-03 SLUGS/rT*3 (101)CTP = 0.424520
{ 39)PMOC = 0.707857 LBF-SEC/FT*3 (102)PFN = 0.741480 3
( 40)QE = 223,988 PsSr (103)BPF1 = 225,369 HZ
{ 41)ALPH = 1.80954 DEGREE —frird-4-R-BMS e .
{ 42)ALMX = 2.34890 DEGREE —0-6-R3-MX 2o bt % @
{ 43)ALMN = 1.37940 DEGREE Al R3- M D— o % vﬁ
{ 44)ALSD = 0.220840 DEGREE —0F-R3-6-Demr0-0-0-0-0-0- 50Ol
{ 45)SSNB = =-.472310 DEGREE {108)RPM1 = 86.5348 %
{ 46)SsMX = 0.206100 DEGREE {lLO9)RIMX = 86.5508 %
{ 47)SSMN = -.9333600 DEGREE {110}RIMN = 86.5000 3
( 48)sSSSD = 0.20975S0 DEGREE (111)R1SD = 0.120800E~01 %
( 49)NTA = <1.00000 DEGREE {112)SPN1 = 2072.69 LBF
( SO)DHDT = ~,139720 FPs {113)LSF1l = 0.916724E+08 K2z
( S1L)PCAB = 12.0050 PSI {l14)LST1 = 0.362106E+09 HZ
{( S2)PCMX = 12.0049 PSI - RP MY e x
{ S3)PCMN = 11.9961 PSI —&r&-rmx—:—o-&&me-o—&—_qg__
{ S4)PCSD = 0.163000E-02 PSI —F¥+1+R4HN—.—0v0&00$¢&+&0—%——'9
{ S5)CDP = 8.53955 PSI -8R 4SO Gr-0-0-0-0-8-0-5+-0-0—Yyen
{ 56 )TCAB = 20.6730 DEGREE C ({L13)RPM2 = 92.8955 3
( 57)cCcC = 1127.52 FPS {L20)R2MX = 92.9336 3
( 58)SIGC = 0.000C00E+00 (l21)R2MN = 92.8633 %
( 59)PC = 0.190524E-02 SLUGS/FT*3 (122)R2SD = 0.143300E-01 %
( 60)PMCC = 2.14820 LBF-SEC/FT"*3 (123)SPN2 = 3063.23 LBF
( 61)TQE3 = 1430.52 rFT-LBF (L24)RSFLl = 0.916723E+08 HZ
( 62)TQMX = 1435.50 rT~LBF (125)RST1 = 0.362106E+09 HZ
( BIITQMN = 1425.25S FT-LBF (126) = 0.000000E+00 ¢

Figure 29. Sample of Tabular Listing of Operational Parameters

134



160
QVERALL = 147.46 08

150
140 ?
w
>
w
|
TS
[+ 4
: ——
n o
B a
Wl o~
a
a
=
: |
=}
® g \ kn. BN lll ll lk l]Llli ‘lL!Il | ‘ll o 4|l

et
100
90 J
0 200 400 600 800 1000 1200 1400. 18600 1800 2000
FREQUENCY (HERTZ)

FIGURE PTR FUSELAGE EXTERIOR NOISE SPECTRUM
TRANSODUCER : (M302) SURFACE MICROPHONE AT FS301 WL70.0
FLIGHT : 18 . RUN : 44 CONDITION NUMBER : 350
FLT SPEED 0.801 MACH NARCELLE TILT -1.00 DEG
FLT ALTITURE 10654 ( 348S54] M (FT) ATTACK ANG 1.81 DEG
PROPFAN PWR 2291 ( 30721 KW (PSHPI SIDESLIP ANG ~-0.47 QEG
PROP TORQ 12944 ( 9S547) MM (FT-LBS) BLADE ANG S8.40 DEG
PROPFAN BPF 225.4 HERTZ PWR COEFF 1.78
TiP RQT SPO 0.806 MACH THRUST COEFF 0.42
TIP HEL SPO 1.137 MACH ADV RATIQ 3.12
PROP THRUST 7042 ( 15831 N (LB)
DISC PWR LD 304.5 ( 37.931 KW/M=2 (PSHP/FT=2]
MARKER 145.078 p8 e 22S5.000 HERTZ

40 AVERAGES 587 OVERLAP HANN WINOOW EFF. 8W. = 3.8 HERTZ

Figure 30. Sample of Computerized Presentation of Narrow-Band
Spectral Data
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ORIGINAL PAGE IS
OF POOR QUALITY

LOCKHEED/NASA-LEWIS PRUPFAN TEST ASSESSMENT PROGRAM ACOUSTIC FLICGHT RESERACH DATaA

COND = 350, FLT = 16,00 RUN = 34,0000
OATA LeVEL AWD CORRESPUNDLNG FREQUENCY AT OR WITHIN +/= 5% Qf N«TH QRDER QOF BPF.
N=1 N=2 N=3 N=4 N=S N=b N=) N=y N=9 N=10
MEAS UNIT 225,4 450.7 876.1 901.5 1126.8 1352.2 1577.6 1803.,0 2028,3 22%3.7
M123 SPL (DB) =1.0 1,0 1.0 1,0 1.0 -1,0 1,0 -1.0 -2.0 2.0
HERTZ -1,0 1,0 1.0 1.0 1.0 -1,0 1.0 =1,0 -2.0 -2,0
M191 SPL (D8B) 123.4 110,13 103,6 -1,0 1.0 1,0 1.0 1.0 =-2.0 2.0
HERTZ 225.0 450,0 §75,0 -1,0 1.0 =1.v 1.0 -1.0 ~2,0 -2,0
M192 S7L (DB) 124.1 111.4 104.4 =-1.0 =1.0 -31.0 1.0 -1.0 2.0 2.0
HERT2Z 225,0 450,0 6§75.0 -1,0 -1.0 =-1,0 1.0 =1,0 =-2,0 .0
M193 SPL (DB) 123,9 108.7 =1,0 =1.,0 =1.0 -1,0 =1.0 -1,0 2.0 «2.0
HZRTZ 225,79 450,90 =1.0 «1.0 -1,0 =1,V =1.0 -1.0 2.0 =2.0
MI194 SPL (DB) 114,% -1.0 1.0 =10 1.0 1.9 -1.0 1.0 -2.0 -2.0
RERTZ ©225.,0 =1,0 1,0 -1.0 1.0 1.0 =1.0 1.0 -2.0 =2,0
M241 SPL (DB) 131.4 115,6 -1.0 -1.0 1,0 1.0 1.0 1.0 -2.0 2.0
HERTZ 225.0 450,0 -1.0 -1,0 l.0 1.0 1.0 =1.0 =2.0 -2.0
M242 SPL (DB} 138,14 133,86 126,2 114.5 111,68 -1.0 -1.0 -1.0 =2.0 =2.0
HERTZ 225,0 450,0 6§715,0 300,0 1127.5 =1,0 =1.0 -1,0 -2,0 =2.0
M243 SPL (DB) 134,3 124.1 117.0 110.4 -1.0 -1,0 ~1.0 -1.0 2.0 =2.0
HerTZ 225.0 456G, 0 675,00 300,00 =100 -1,0 =1.0 -1.0 2,0 ~2.0
M244 SPL (08} 120,2 108,7 -1.0 -1.0 -1l.0 1,0 1.9 -1,0 .9 2.0
HERTZ 225.0 450.0 -1,0 -1.0 =1l.0 1.0 1.0 -1,0 -2.0 2.0
M245 SPL (DB) 118.0 ~1{.0 -1,0Q -1,0 =1.0 1.0 -1.0 1.0 2.0 =2.0
HeRTZ 25,9 -1.0 -1.0 -1.0 -1.7 1.0 -1.0 1.0 2.0 =2.0
Lk SeL (087} 1357 131.7 119.4 109,0 170%6.5 163,13 -1.0 =1.0 2.0 2.0
HERTZ 225,0 450.0 575.0 900.0 1127,5 1352.5 “1,0 =1.0 .0 =2.0
M272 SPL (D8) 136,4 135.3 129.1 122,0 116.8 114,7 -1,0 1,0 -2.0 2.0
HERTZ 225.0 450.0 875,00 500.0 1127.3 1352Z.% =-1.0 -1.0 -Z2.0 -Z.0
NT73 SPL (0B) 136,727 133,38 129.3% 1737 T18.5S 115,35 TIT,§ 105,8 =70 =7.0
HERTZ 225.0 450,0 675.0 900.0 1127,5 1352,5 1577.5 1802.5 =2.0 =2.0
M274 SPL (DB) 130,2 124.1 112.5 105.7 =1.0 -1.0 =-1.0 =-1.0 -2,0 2.0
RERTZ 225,90 450.0 575.0 J0u. 0 =10 =1,0 =1.0 =1.0 =7.0 =7.0
M27S SPL (D87 127,90 115,58 =-1.0 -1.0 =1,0 -T,0 =1.0 1.0 2.0 =2.0
HERTZ 225,0 450,0 -1,0 -1.90 =1.,0 -1,9 ~1.0 1.0 2.0 -2.0
M276 SPL (DB) -1,0 -1.0 ~1.0 -1.0 -1.0 -1.0 1,0 1.0 -2.0 2.0
HeRTZ -1.0 -1.0 . -1,0 1.0 -1.0 =1.0 o0 -2.0 -3.0

Figure 31. Sample of Computerized Tabulation of Spectrum Amplitude
and Frequency at Orders of Blade Passage Frequency
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E A TONE CORRECTED PNL (PNOB) :
0 OVERALL SPL (OBCA) 3
120 £ ©® A-WEIGHTED SPL (DBA) 3
110 £ E
c
[ss] - p
jom] C 3
. 100 £ 3
oy C p
(] - N -
= o i 1
e E 3
& 90 E 3
Q E p
Z E 2 3
[+ 1 C — A 3
ok i W
E 9y, 3
Q 3
70 £ = 2
o & ]
£ Q B ;
60 EA.[ N SN T ST - P B S SR =
-25  -20 -15 -10 -5 0 5 10 15 20 25
TIME (SECONDS)
F IGURE PTR ACOUSTIC TIME HISTORY
TRANSDUCER : (1G) GROUND-LEVEL MIC. ON-TRACK
FLIGHT : 44 RUN : 10 CONOITION NUMBER : 1186
FLT SPEED 0.309 MACH PROPFAN BPF 236.4 HERTZ
FLT ALTITUDE 304 (938} M (FT) NACELLE TILT -1.00 0EG
PROPFAN PWR 4374 ( SBE66) KW (PSHPI ATTACK ANG 4.82 DEG
PRGP TORG 23585 ( 173811 MN (FT-LBS) SIDESLIP ANG -1.68 DEG
TIP ROT VEL 255 (8351 M/SEC (FT/SEC) BLADE ANG 34.74 DEG
TIP ROT SPO 0.758 MACH PWR COEFF 0.50
TIP HEL SPO 0.819 MACH THRUST COEFF 0.49
PROP THRUST 29178 ( 65591 N (LB) ADV RATIO 1.28
0ISC PWR LD S81.4 ( 72.431 KW/Mm2(PSHP/FTa2] HERDING SOUTH

Figure 32. Sample of Computerized Presentation of Flyover

Noise Time History Data
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FIGURE PTR 173 OCTAVE SPL SPECTRUM AT 3.0 SECONDS
TRANSDUCER (1G ) GROUNO-LEVEL MIC. ON-TRACK
FLIGHT : 44 RUN 10 CONDITION NUMBER 1186
FLT SPEED 0.309 MACH PROPFAN BPF 236.4 HERTZ
FLT ALTITUDE 304 | 9S8) M (FT) NRCELLE TILT -1.00 DEG
PROPFAN PWR 4374 ( SBBB) KW (PSHP) RTTACK ANG 4.82 DEG
PROP TORG 23885 ( 173811 MN (FT-LBS! SIBESLIP ANG -1.88 DEG
TIP RCT VEL 255 ( 8351 M/3EC (FT/SECI BLADE ANG 34.74 DEG
TIP ROT sPO 0.758 MACH PWR COEFF 0.90
TIP HEL SPOD 0.818 MACH THRUST COEFF 0.48
PROP THRUST 29178 ( 8558 N (LB} ROV RATIO 1.28
DISC PWR LD S81.4 ( 72.43] KW/M=2(PSHP/FT=2] HEADING SOUTH
Figure 33. Sample of Computerized Presentation of 1/3 Octave
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Band Spectral Data
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i X 4TH ORDER  ( 20} 1
90 b b e T,
180 190 200 210 220 230 240 250 260
PROPFAN TIP ROTATIONAL VEL (M/SEC)
L ! L s L ] L s n : i . 5 | . { L L . L | L : L |
600 650 700 750 300 850
PROPFAN TIF ROTATIONAL VEL (FT/SEC)
FIGURE PTA/SR-7L NEAR FIELD NOISE: HARMONIC OEPENDENCE ON PROPFAN TIP
ROTATIONAL VELGCITY AT H=35000 FT; M=0.8: NT=-1 DEG: MAX POWER.
TRANSDUCER : (LI1FM) FUSELAGE SURFAGE MAXIMUM NOISE
MEAN MEAN ; RANGE
ALTITUDE 10705 . METERS 35122.; 34833. TO 35802. FEET)
AIRSPEED 0.303 MACH 0.803; 0.771 TO 0.817 MACH)
TIP ROTATION VELOCITY 232.54 M/SEC 763.24; 617.98 TO 839.13 FT/SEC)
TIP HELICAL SPEED 1.120 MACH 1.120: 1.018 TO 1.178 MACH)
ADVANCE RATIA 3.295 3.295: 2.832 T0 4.082)

PROPFAN BPF
PROPFAN SHAFT
PROPFAN THRUST
THRUST COEFFIC
PROPFAN SHAFT
POWER COEFFICI
BLADE ANGLE
NACELLE TILT R
ANGLE OF RTTRC
SIDESLIP ANGLE
FREESTREAM RHO

21S5.95 HERTZ
TORQUE 12821 . M-NEWTON
§202.1 NEWTONS

215.95: 174.85 TO 237.43 HERTZ)
89455.4; 8452.5 T0 10552. FT-LBS)
1394.3: 913.55 T0 1621.! LBS!

e R N R e T T e T e T SV SR,

IENT 0.408 0.406; 0.355 70 0.482!
POWER 2158.3 Kk 2894.3; 2S583.7 TO 3148.0 HP)
ENT 2.033 2.033: 1.389 TO 3.2601
57.755 DEGREES $7.75S: S51.583 T0 62.633 DEGREES)
NGLE -1.000 DEGREES -1.000: -1.000 TO -1.000 DEGREES)
K 1.748 DEGREES 1.748: 1.381 TO 2.602 DEGREES)
-0.204 DEGREES -0.204: -0.683 TO (0.493 DEGREES)
cz2 33213. N/Mw2 693.687: 677.32 TO 703.24 LB/FT=2)

Figure 35. Sample Parametric Plot of Near-Field Noise Data
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MEAN MESN RANGE
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TIP ROTATICN VELOCITY 22$.43 M/SEC ( 7S2.73: 5i6.25 TO 840.80 FT/3EC]
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AOVANCE RATIO 1.482 ( 1.432: 1.250 70 !.380)
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ST0ESLIP ANGLE -1.018 DEGREES ( =-1.018: -4.822 T0 2.1S0 QEGREESI
FREESTREAN RHO C2 137111, N/Mx2 { 2862.8; 2828.7 TO 2908.0 LB/FTx2}

Figure 36.
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3()()r o Calculated frequency 5% = 33° 10P
o Measured frequency 0% = 30°
250
N
I 200
!
o
£ 150 g 5P
S 1T
4 4P
w1005 m
o—— =~ 3P
Ei:——______:jZ:::::fZ::::iQ::::——fzi—qq;Eg—-
2P
0L = oo o—1F
1P
0 | | | | J
1300 1400 1500 1600 1700 1800 RPM
[ ] | 1 t | J
75 80 85 90 95 100 105 %

Propfan speed

Figure 46. SR-7L Blade Natural Frequencies
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ALTITUDE
AGL

SPEY ENGINE
POWER

305 m (1000 ft)

305 m (1000 ft)
396 m (1300 ft)
488 m (1600 ft)

MINIMUM POWER FOR
LEVEL FLIGHT

SOFT FLIGHT IDLE
SOFT FLIGHT IDLE
SOFT FLIGHT IDLE

Figure 61. Planned Nominal Low~Altitude Test
Propfan Removed
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LN

6 = 900

Rg (ACTUAL RADIAL
DISTANCE)

RR = 305m (1000 FT)

AT TR TR TR OO Y S AR AR R RS R RRNY

THE ELEVATION ANGLE (¢) IS A FUNCTION
OF LATERAL MICROPHONE

Rg (ACTUAL RADIAL
DISTANCE)

T rr7T7T7777777777 7777 7777777 /7
THE POLAR ANGLE (0) IS A FUNCTION OF TIME

e

Figure 63. Coordinates for Normalized Lossless Data

168



00001

9sToN Louanbaig Y81y snoyewouy jo uoyleIISNIII

A~Iv ADNINDIY4 ¥3ILIN3ID 970 €/1
00€9 061t 0091 008 00t 007

*%9 2i1n314

0ol

/

_ | _ 1 I I

a3xyNSvaw sy

SS31SSO1

(14 9'9001) W20€ = IONVLSIA NOILYOVIOHd
ANOHJOHIIN ANNOYUD HIAOATA

0s

09

0L

08

06

00t

(8P) 1dS

169



A~LEVEL FLIGHT, SPEY THRUST: LEFT 11,526N (2591 LB)

80 [ RIGHT 10,819N (2432 LB)
- O=-SOFT FLIGHT IDLE, SPEY THRUST: LEFT 983N (221 LB)
- RIGHT 556N (125 LB)
= A ] :
70 |- , I | -
- (a) @ = 30° ]
4 Pt -
. L \feEs E
qr W < T \@\S -
= w .
~ , ]
~ 1 3
50
70 ' A | ‘ =
' (b) 6 = 90° -
g = S : E
k=]
= C | .
= 50 - =
w
- (¢) e = 153° ]
go [ 3
?8/_—_. = \é.\\_‘_“__\i -]
&\ -
70 & - ; -
- é\ ~ ] ':\'C:/O\S‘E—— 3]
E J = :
60 ; ' ) 1 ! | ? t ' N ' ¢ ' R -
50 100 200 400 800 1600 3150 6300
1/3 OCTAVE BAND CENTER FREQUENCY (Hz)
Figure 65. Effect of Spey Engine Thrust on Far-Field

Noise - Propfan Blades Removed; Flyover
Position at 305m (1000 ft) Radius
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SPL (dB)

80 i 1 Rl T 1 I | i T i i l’ - i-_ L T 1

@ = 33.0° TO 39.2°
FLYOVER MICROPHONE

70

XITTTTTITTTTT T

Li e tp s eegr e it iiryae

60 .
&)
50 :
50 100 200 400 800 1600 3150 6300 10000
80 : 1 ) | ] ; 1 ] |l 1 } i :
- g = 80.0° TO 92.4° =
- FLYOVER MICROPHONE =
70 -
60 -
50 I A L e < r L i l 1 i 1 1 R 1
50 100 200 400 800 1600 3150 6300 10000

1/3 OB Center Frequency (Hz)

Figure 66. Noise Spectra With Propfan Blades Removed; Free-Field
Lossless Data at 305m (1000 ft) Radius
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80 . t l I b ) + -
- 3
- (a) 8 = 27.5"° -
70 F /‘\‘ 3 I =
: f\& | ]
80 3 = | -
& -
c0 = O - TOTAL AIRCRAFT NOISE 3
A - PROPFAN BLADES REMOVED
! | | E
R (b) o = 89" 3
80 -
70 -
(=) =
T, 60 ]
] 3
. 3
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50 =
. : /\/x’ﬁc :
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[o: .
= /\_/\/ T E
- A \ S Z
60

VY =
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Figure 67. Comparison of 305m (1000 ft) Flyover Noise for

Propfan Blades On and Off
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PEAK OASPL (dB)

110

100

90

80

NACELLE TILT = -1°

HELICAL Myjp = 0.781 TO 0.791

ROTATIONAL TIP SPEED = 244 MPS (800 FPS)
ALTITUDE = 305m (1000 FT)

ANGLE OF ATTACK, a = 4.3° TO 5.2
SIDESLIP ANGLE, 8 = -2.35° TO 2.15°

i Microphone Ground Flush on Hard Surface, ]
- at Flyover Location. -
L n |
L @ :
- - -
| i ] I | 1 ]
2000 3000 4000 5000
PROPFAN SHAFT POWER (KW)
L | i | l 1

2000 3000 4000 5000 6000 7000

PROPFAN SHAFT POWER (HP)

Figure 70. Variation of Noise With Propfan Power
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PEAK OASPL (dB)

PEAK OASPL (dB)

PTA LOW ALTITUDE FAR~FIELD ACOUSTICS
NACELLE TILT = -1°  SIDESLIP ANGLE, S = -4.89 TQ 2.20
ALTITUDE = 305m (1000 FT)
ANGLE OF ATTACK, o = 3.2°9 TO 5.59
110 .
C (a) Microphone Ground Flush on Hard Surface, E
~ at Flyover Location. -
100 |- N .
- // ‘ i
- - / ‘.’A -
b /%- -‘*\'V -
- - = /' ,:“-“". N
- ;:/'/ = oo .
9 F = M7y BRANGE
- o O  0.634 TO 0.650
o A 0.700 TO 0.713 ]
- < 0.781 TO 0.791 A
[ C _ ]
80 0.808 TO 0.821
100 —(b) Microphone 1.2m (4 ft) Above Grass, — ]
- at Flyover Location. — .
_ - C./ /'/ :
: E// : ettt @ :
%0 r P e P
- 9/0/ e x
go L e/l : ] L 1 A |
2000 3000 4000 5000
PROPFAN SHAFT POWER (KW)
- ] | ] i .|
2000 3000 4000 5000 6000 7000
PROPFAN SHAFT POWER (HP)
Figure 71. Effect of Power and Helical Tip Mach Number
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Figure 71. Effect of Power and Helical Tip Mach Number
on Peak OASPL (Continued
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PREDICTED PEAK OASPL - dB
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Figure 78. Effects of Shaft Horsepower on Predicted and Measured Noise

at the Nominal Conditions of: Altitude = 305 m (1000 ft);
VROT = 213 m/s (700 fps); My = 0.7; NT = -19;
Angle of Attack = 4.39; Sideslip Angle = -19,
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Sideslip Angle = -19,

190



PEAK OASPL (dB)

100

90

80

70

100 ' |

90

80

LD

TTTTTTTUTd

i 1 i ) ] i ¥ i i

el

ol b b

JAN

~ =10

—/A'C MEASUREMENT

] t { ] i

| OO OO O O O W |

TTTTTITTU11d

e

]

//

PREDICTIO

N

| T T O T O |

o
(c)

Microphone Ground Flush on Hard Surface,
at 450m- (1476 ft) Starboard Sideline Location.

[ |

A/

‘ (d) Microphone 1.2m (4 ft) Above Grass, at 450m
(1476 ft) Starboard Sideline Location.

/A<\_ME

A

[} 1 i 1 1] i I )

ASUREMENT

j I O T

e

-

T
—

O T I O |

PREDICTION
A
t 1 1 ] | [ 1 1 | | 1 | L ! | | 1 ] | It | ! 1 | 1 t 1 ] 1 [} 1 } ] .
0.5 0.6 0.7 0.8 0.9
PROPFAN TIP ROTATIONAL MACH NO.
Figure 79. Effect of Propfan Tip Mach Number (Continued)



PEAK OASPL (dB)

NOMINAL CONDITIONS

PROPFAN POWER = 4320 KW (5790 HP)
Mty = 0.70
ALTITUDE = 305m (1000 FT)
ANGLE OF ATTACK = 4.30

SIDESLIP ANGLE

-10

LL bt i1 4t b

100 R R L I N ) BN O R D
o £§ .
L A \ ]
- ﬁ —  MEASUREMENT ’

90 ]
N (a) Microphone Ground Flush on Hard Surfack— PREDICTION -
[ at Flyover Location. f d

80 ] ! | |

100
N i I i 1 i
- (b} Microphone 1.2m (4 ft) Above Grass, ]
= at Flyover Location. -

90 L é — T N
- A A ~ .
- MEASUREMENT ]
C ]

go | N
- @
- N PREDICTION

70 I-.I 19 ¢ 1ttty t ottty fFrr ottty f 1Lty I l‘ [ O N O Pt

-3 -2 -1 0 1 2
NACELLE TILT ANGLE, (Deg.)
Figure 80.

Effects of Nacelle Tilt On Predicted and Measured Noise

192



LATERAL NOISE ATTENUATION:
LNAg = SPLy - SPL4
SPL5 = SPLp -ASPL
A SPL = CORRECTION FOR DISTANCE, (R - H)

777&”7/// 7 ¢ ¢ 7 //f"]y’,r

2

Figure 81. Calculation Procedure for Lateral Noise Attenuation
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LATERAL ATTENUATION, dB

Figure 82.
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Figure 88.
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(¢) No. 1 Spey at 100Z MCT
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Figure 88. Effect of Near-Side Spey Power on Fuselage Noise

(Continued)
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H = 10,668m {35,000 FT)

x~ = -1° =1, =~ -0.5°
M =~ 0.80, NT 1°, a4, =~ 1.5, ﬂA 0.5

VROT MPS (FT/SEC)

255 (837)

FIRST ORDER BPF, AREA MAX SPL dB

190
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485 KW (650 HP)
1304-L I\ 1 | 1 [ |
-2000 0 2000 4000 6000 8000 10,000
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1 L 1 I i
-500 0 +500 +1000 +1500 +2000

POUNDS

Figure 100. Fuselage Measured SPL Dependence on Propfan Thrust
and Tip Speed
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Figure 10l. Fuselage Measured SPL Dependence Upon Propfan Advance
Ratio and Power Coefficient
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Figure 102. Wing Boom Measured SPL Dependence on Propfan

Tip Speed and Power
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Fuselage Measured SPL Variation Over Flight Envelope

214



14

NT =z -1°

VROT * 243 MPS (797 FPS)
MAXIMUM CONTINUOUS POWER
ap AND fSp VARY

ASPL = BPF 1 - BPF 2

dB
(AREA MAXIMUMS)

12,7

40r- 12
10
30—
W o
o W3k
2 &
=
E O
-
;20~< EG_
4—
10 |-
2 |-
0'- 0

.3 .4 .5 .6 N .8 .9
MACH NUMBER

(c) ASPL FROM BPF 2 TO BPF 1

Figure 103. Fuselage Measured SPL Variation Over Flight Envelope

(Continued)
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Figure 104. Effect of Propfan Helical Tip Mach Number

on Fuselage SPL
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SUPERSONIC PROP TIPS
H = 7620m (25,000 FT) AND 12,192m (40,000 FT)

M =0.8
CASE 1 CASE 2
My 1.02 1.14
Cp 2.859 1.526
J 3.974 3.108 * A dB BASED ON FUSELAGE
BPF 1 AdB 5.6 5.0 MAXIMUM SPLs
BPF 2 4AdB 4.2 5.1 * AdB CORRECTED FOR A o

SUBSONIC PROP TIPS
H = 3048m (10,000 FT) AND 10,668m (35,000 FT)

M = 0.6
CASE 3 CASE 4 CASE 5
MTH 0.87 0.97 0.97
CP 1,981 0.628 1.225
dJ 3.002 2.484 2.492
BPF 1 AdB 7.5 6.5 1.5
BPF 2 ad8 8.8 6.4 6.4

Figure 105. Test Conditions for Altitude Scaling Validation
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Figure 106. Results from Altitude Scaling Validation Tests
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AREA MAX SPL @ BPF 1

M=08 o
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Figure 109. Effect of Nacelle Tilt on Fuselage and Wing Boom SPL
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Figure 110. Effect of Nacelle Tilt on Fuselage SPL
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Fuselage SPL Variation Over Flight Envelope, NT = -3
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Figure 112. Fuselage SPL Variation Over Flight Envelope, NT = +2°

Use and/or disclasure is governed by the state-
ment on the title page of this document.
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Figure 113. Effect of Nacelle Tilt on Fuselage SPL Over

Flight Envelope
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Figure 114, Effect of Nacelle Tilt on Boom SPL Over

Flight Envelope
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Figure 115. Effect of Nacelle
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Figure 116. Effect of Sideslip on Fuselage and Boom SPLs
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©  HAMILTON STANDARD (HANSON) FREQUENCY DOMAIN PROPELLER NOISE RADIATION THEORY
o SOURCES )
- THICKNESS NOISE (MONOPOLE SOURCE)
BASED ON BLADE CHORD, THICKNESS, AIRFOIL SECTION, AND SWEEP DISTRIBUTIONS
- STEADY LOADING NOISE (DIPOLE SOURCE)
BASED ON BLADE AERODYNAMIC LOADING DISTRIBUTION
*  SPANWISE PRESSURE DISTRIBUTION DERIVED FROM 20 UFTING LINE METHODS
CHORDWISE PRESSURE DISTRIBUTION DERIVED FROM TRANSONIC AIRFOIL CODES
- UNSTEADY LOADING NOISE (DIPOLE SOURCE)
BASED ON QUASI-STEADY AERODYNAMIC LOADING DISTRIBUTION
LASC SUPPLIED FLOW-FIELD INFORMATION
- NON-UINEAR NOISE (QUADRUPOLE SOURCE)
BASED ON ACOUSTIC SHEAR TENSOR
o PROPAGATION
- FUSELAGE PREDICTIONS INCLUDE BOUNDARY LAYER REFRACTION AND FUSELAGE SCATTERING EFFECTS
- WING BOOM PREDICTIONS ARE FREE-FIELD
o PREDICTION
- DISCRETE TONES AT BPF
- AMPLITUDE AND RELATIVE PHASE OF PROPFAN TOTAL NOISE
o  PREDICTION METHODOLOGY DOES NOT INCLUDE:
- EFFECT OF LEADING EDGE AND TIP EDGE VORTICES ON LOADING DISTRIBUTIONS (UFTING SURFACE)
- REFLECTIONS FROM FUSELAGE, WING, ANO NACELLE
- ANY EMPIRICAL ADJUSTMENTS

Figure 117. Propfan Near-Field Acoustic Prediction Methodology

o FIRST ORDER BPF
e AREA MAXIMUM SPLs
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160 DESIGN /
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150

140 -

PREDICTED SPL, dB

130+ (XY}
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110 L s L 2 '
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MEASURED SPL, dB

Figure 118. Summary of Fuselage Predicted and Measured SPLs
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e FIRST ORDER BPF
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Figure 119. Summary of Predicted and Measured SPL Maxima
Locations on Fuselage

wL 70
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H = 10,653m (34,954 FT) Mty = 1.137
160
150l PREDICTED (WL 98) o= == o o —-D\

MEASURED (WL 70} —_—
160}
130
SPL~dB
120 8PF
110 ud
/ / w \
7y 3 N
1004 / d z \
/ E \
/ o \
90 & D +D
/ -DP -O.SDP ol. +€).Sl P IP %
I !
80 | F/ 1 I 1 1 1 It !
100.0 150.0 200.0 250.0 300.0 350.0 300.0 450.0

FUSELAGE STATION

Figure 120. Fuselage Axial Distribution of Measured and
Predicted SPL
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Figure 121.

FUSELAGE STATION

Fuselage Surface Predicted SPL Values
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Figure 122.

ORDERS OF BLADE PASSAGE FREQUENCY, BPF

Comparison of Predicted and Measured Spectra
on Fuselage

224



-19
NT = -1 ap = 169
1S5 M =08 Ba = -0.5°
H = 10,668m (35,000 FT)
b == - == = o ----0
1500 e e m e —pmm—— = ——a
& o---=°
]
@ 1u5f
&
7] -—‘O
= dB
po]
2
1u0f
3 0 VroT
< MPS (FPS)
2 v 189 (620)
135 O 212 (697)
MEASURED A 243 (797)
O 255 (837)
130 i | 1 L !
0 500 1000 1500 2000 2500
Kw
PROPFAN SHAFT POWER
L i : | ! L 1 ]
) 500 1000 1500 2000 2500 3000 3500
HP

Figure 123. Predicted and Measured Fuselage SPL Dependence on
Propfan Tip Speed and Power
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Figure 124, Variation of Predicted and Measured Fuselage SPL
With Tip Speed
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Figure 125. Fuselage Surface Predicted SPL Over Flight Envelope
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Figure 126. Fuselage Surface Predicted-Less-Measured SPL
~ Over Flight Envelope
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Figure 127. Predicted and Measured Effect of Nacelle Tilt
on Fuselage SPL
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Figure 128. Summary of Predicted and Measured SPLs at the
Wing Acoustic Boom
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Figure 129. Wing Lower Surface Acoustic Data - Prop Off
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Figure 130. Wing Lower Surface Acoustic Data - Prop On
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Figure 131.

Wing Upper Surface Acoustic Data - Prop Off
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Figure 132. Wing Upper Surface Acoustic Data - Prop On
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Figure 140. Wing Inboard Surface Measured FPL Dependence on
Propfan Tip Speed and Power
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Figure 146. Relation Between Wing FPLM and Fuselage SPLM
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[-] HAMILTON STANDARD PROCEDURE
CALCULATE PROPFAN WAKE CHARACTERISTICS
- POTENTIAL WAKES (BASED ON LIFTING-LINE AERODYNAMICS FOR SPANWIS
. VISCOUS WAKES (SILVERSTEIN WAKE MODEL BASED ON BLADE SECTION DRAG
- OBTAIN DISTUNBANCE COMPONENT PENPENDICULAR TO THE WING SURFACES
o DETERMINE DISTURBANCE MAGNITUDE AS A FUNCTION OF WAVE NUMBER
- FOURIER TRANSFORM
o DERIVE FPL ACROSS THE AIRFOIL SURFACE USING AIRFOIL LIFT RESPONSE METHOD
- INFINITE SPAN, THIN, CONSTANT CHORD, SWEPT WING
- CALCULATES DIFFERENTIAL PRESSURE (PRESSURE TOP AND BOTTOM OF WING ASSUMED TO BE OF EQUAL

AMPLITUDE AND OPPOSITE PHASE)
. PRAOPFAN AXIS IS ASSUMED TO UIE IN THE PLANE OF THE WING SURFACE

€ LOADING DISTRIBUTION)

-] PREDICTION
- DISCRETE TONES AT BPF
- AMPUITUDE AND RELATIVE PHASE OF FPL
o PREDICTION METHODOLOGY DOES NQT INCLUDE
. LEADING EDGE OR TIP EDGE VORTEX LIFT
. UNSTEADY BLADE LOADS DUE TO INFLOW ANGLE-OF-ATTACK EFFECTS
. AOLL-UP OF BLADE VORTEX SHEET IN TIP REGION
. WING LOADING EFFECTS ON LIFT RESPONSE
- ANY EMPIRICAL ADJUSTMENTS

Figure 151. Slipstream Impingement Fluctuating Pressure
Prediction Methodology
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Figure 152. Summary of Wing Predicted and Measured FPLs
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Figure 153. Wing Lower Surface Measured and Predicted FPLs
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Figure 154. Wing Lower Surface Predicted and Measured FPL - Data
from Leading Edge Microphones
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Figure 163. Circumferential Variation of Cabin Noise
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Relation Between Normalized Average Wing Tonal
Vibration Level and Applied Force Level
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<AL> -FL, dB RE 1 MICRO “G"/4.446N
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wg.Flockheed
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5.7 Lockheed
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